P3128 [USACO15DEC]最大流Max Flow (树上差分)
题目描述
Farmer John has installed a new system of N-1N−1 pipes to transport milk between the NN stalls in his barn (2 \leq N \leq 50,0002≤N≤50,000), conveniently numbered 1 \ldots N1…N. Each pipe connects a pair of stalls, and all stalls are connected to each-other via paths of pipes.
FJ is pumping milk between KK pairs of stalls (1 \leq K \leq 100,0001≤K≤100,000). For the iith such pair, you are told two stalls s_isi and t_iti, endpoints of a path along which milk is being pumped at a unit rate. FJ is concerned that some stalls might end up overwhelmed with all the milk being pumped through them, since a stall can serve as a waypoint along many of the KK paths along which milk is being pumped. Please help him determine the maximum amount of milk being pumped through any stall. If milk is being pumped along a path from s_isi to t_iti, then it counts as being pumped through the endpoint stalls s_isi and
t_iti, as well as through every stall along the path between them.
输入格式
The first line of the input contains NN and KK.
The next N-1N−1 lines each contain two integers xx and yy (x \ne yx≠y) describing a pipe
between stalls xx and yy.
The next KK lines each contain two integers ss and tt describing the endpoint
stalls of a path through which milk is being pumped.
输出格式
An integer specifying the maximum amount of milk pumped through any stall in the
barn.
输入输出样例
输入 #1
5 10
3 4
1 5
4 2
5 4
5 4
5 4
3 5
4 3
4 3
1 3
3 5
5 4
1 5
3 4
输出 #1
9
思路:
对于多次修改一个询问的树上统计问题 我们可以直接树上差分解决问题 任意两个点的路径都可以差分成 u->lca(u,v) lca(u,v)->v 差分可以分为点差分和边差分 唯一的区别在于对lca的操作不同 这题我们显然可以用点差分 每次修改都维护一个数组 最后dfs扫一遍统计答案即可。(这题卡掉了vector(可能是我写疵了 re wa mle都有。。) 用链式前向星就可以过)
性质(一个点的真实权值是一个点子树内所有差分后的权值之和)
#include<bits/stdc++.h>
using namespace std;
const double pi = acos(-1.0);
const int N = 5e4+7;
const int inf = 0x3f3f3f3f;
const double eps = 1e-6;
typedef long long ll;
const ll mod = 1e9+7;
struct edge{
int next,v;
};
edge e[N<<1];
int head[N],cnt,f[N][30],d[N];
int val[N];
void add(int u,int v){
e[++cnt]=(edge){head[u],v};
head[u]=cnt;
}
int T;
void dfs(int u,int fa){
d[u]=d[fa]+1;
for(int i=head[u];i;i=e[i].next){
int v=e[i].v;
if(v==fa) continue;
f[v][0]=u;
for(int j=1;j<=T;j++)
f[v][j]=f[f[v][j-1]][j-1];
dfs(v,u);
}
}
int lca(int x,int y){
if(d[x]>d[y]) swap(x,y);
for(int i=T;i>=0;i--)
if(d[f[y][i]]>=d[x]) y=f[y][i];
if(x==y) return x;
for(int i=T;i>=0;i--)
if(f[x][i]!=f[y][i]) x=f[x][i],y=f[y][i];
return f[x][0];
}
int ans=-inf;
void solve(int u,int fa){
for(int i=head[u];i;i=e[i].next){
int v=e[i].v;
if(v==fa) continue;
solve(v,u);
val[u]+=val[v];
}
ans=max(ans,val[u]);
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
int n,k; cin>>n>>k;
T=log2(n)+1;
for(int i=1;i<n;i++){
int u,v; cin>>u>>v;
add(u,v); add(v,u);
}
dfs(1,0);
for(int i=1;i<=k;i++){
int s,t; cin>>s>>t;
int LCA=lca(s,t);
val[s]++; val[t]++; val[LCA]--; val[f[LCA][0]]--;
}
solve(1,0);
cout<<ans<<endl;
}
P3128 [USACO15DEC]最大流Max Flow (树上差分)的更多相关文章
- 洛谷P3128 [USACO15DEC]最大流Max Flow(树上差分)
题意 题目链接 Sol 树上差分模板题 发现自己傻傻的分不清边差分和点差分 边差分就是对边进行操作,我们在\(u, v\)除加上\(val\),同时在\(lca\)处减去\(2 * val\) 点差分 ...
- 洛谷 P3128 [ USACO15DEC ] 最大流Max Flow —— 树上差分
题目:https://www.luogu.org/problemnew/show/P3128 倍增求 lca 也写错了活该第一次惨WA. 代码如下: #include<iostream> ...
- 洛谷3128 [USACO15DEC]最大流Max Flow——树上差分
题目:https://www.luogu.org/problemnew/show/P3128 树上差分.用离线lca,邻接表存好方便. #include<iostream> #includ ...
- 洛谷 P3128 [USACO15DEC]最大流Max Flow-树上差分(点权/点覆盖)(模板题)
因为徐州现场赛的G是树上差分+组合数学,但是比赛的时候没有写出来(自闭),背锅. 会差分数组但是不会树上差分,然后就学了一下. 看了一些东西之后,对树上差分写一点个人的理解: 首先要知道在树上,两点之 ...
- P3128 [USACO15DEC]最大流Max Flow(LCA+树上差分)
P3128 [USACO15DEC]最大流Max Flow 题目描述 Farmer John has installed a new system of pipes to transport mil ...
- 洛谷P3128 [USACO15DEC]最大流Max Flow
P3128 [USACO15DEC]最大流Max Flow 题目描述 Farmer John has installed a new system of N-1N−1 pipes to transpo ...
- 洛谷P3128 [USACO15DEC]最大流Max Flow (树上差分)
###题目链接### 题目大意: 给你一棵树,k 次操作,每次操作中有 a b 两点,这两点路上的所有点都被标记一次.问你 k 次操作之后,整棵树上的点中被标记的最大次数是多少. 分析: 1.由于数 ...
- 洛谷P3128 [USACO15DEC]最大流Max Flow [树链剖分]
题目描述 Farmer John has installed a new system of pipes to transport milk between the stalls in his b ...
- 洛谷P3128 [USACO15DEC]最大流Max Flow [倍增LCA]
题目描述 Farmer John has installed a new system of pipes to transport milk between the stalls in his b ...
随机推荐
- IPC 经典问题:Reader & Writer Problem
完整代码实现: #include <stdio.h> #include <unistd.h> #include <time.h> #include <stdl ...
- 基于 MPI/OpenMP 混合编程的大规模多体(N-Body)问题仿真实验
完整代码: #include <iostream> #include <ctime> #include <mpi.h> #include <omp.h> ...
- 计算机科学: 寄存器&内存
参考: [十分钟速成课:计算机科学]6.寄存器&内存 要想聊寄存器Latch,首先要聊内存.什么是内存? Memory,就是储存信息的东西. 我们都玩过单机游戏,如果突然关机,游戏结束但是没有 ...
- python_字典(dict)
dict 一.结构: info = { "key":"value", "key":"value" } print(inf ...
- alter column和modify column
5.6中,发现其实alter column 和更改modify column 步骤是一样的 mysql> create table xs(name varchar(12),age int def ...
- 【Linux】CentOS7中修改中文字符集
CentOS 7中字符集查看的方式是 locale -a 或者locale 如果想显示中文的话,应该修改为 LANG="zh_CN.UTF-8" 在命令行界面临时修改字符集的话 ...
- MAVEN编译NIFI源码
场景: 由于项目需求,需要借用NIFI进行二次开发,因此需要将NIFI源码进行修改,然后编译,办公环境无外网. 步骤: (1) 找一台可以上网(外网)的机器,安装java环境和maven环境,安装 ...
- 使用line_profiler对python代码性能进行评估优化
性能测试的意义 在做完一个python项目之后,我们经常要考虑对软件的性能进行优化.那么我们需要一个软件优化的思路,首先我们需要明确软件本身代码以及函数的瓶颈,最理想的情况就是有这样一个工具,能够将一 ...
- FLask的偏函数应用
偏函数 实际上,偏函数主要辅助原函数,作用其实和原函数差不多,不同的是,我们要多次调用原函数的时候,有些参数,我们需要多次手动的去提供值.而偏函数便可简化这些操作,减少函数调用,主要是将一个或多个参数 ...
- 1.Spring的基本应用
1.1概述 1.1.1 Spring是什么 Spring一个轻量级的框架,以IOC(控制反转)和AOP(面向切面编程)为内核,Spring在表现层提供了Spring MVC的框架整和功能,在业务逻辑层 ...