一些概念

连通:无向图中的任意两点都可以互相到达。

强连通:有向图中的任意两点都可以互相到达。

连通分量:无向图的极大连通子图。

强连通分量:有向图的极大强连通子图。


DFS 生成树:对一张图(有向无向均可)进行深度优先遍历得到的生成树。

树边:在 DFS 生成树上的边。

前向边:由子树的根连向子树内的非树边。

返祖边:由结点连向其祖先的边。

横叉边:除上面三种之外的边。

求强连通分量

对于结点 \(u\),记录两个信息 \(dfn_u\) 和 \(low_u\)。

\(dfn\) 表示时间戳,即第几个被遍历到的点。

\(low\) 表示从当前点开始,经过的边的两个端点均未处在已找出的强连通分量中,能到达最小的时间戳。

在 dfs 的过程中,将经过的点塞进一个栈里面。一旦发现 \(dfn_u=low_u\) 就一直弹栈直至弹出结点 \(u\),弹出的这些点就构成了一个强连通分量。

然后考虑如何求出 \(low_u\),枚举 \(u\) 的每条出边 \((u,v)\)。

  • 结点 \(v\) 未遍历过,先递归处理该点,这样 \((u,v)\) 就成了树边,然后 \(low_u\gets\min(low_u,low_v)\)。

  • 结点 \(v\) 已遍历过。

    • 结点 \(v\) 处在一个已找出的强连通分量中,根据定义直接跳过。
    • 结点 \(v\) 未处在已找出的强连通分量中,这样 \((u,v)\) 就成了非树边,同样地,\(low_u\gets\min(low_u,low_v)\)。

\(low\) 数组其实是在找一条向上的路径,而两个强连通分量是不可能有公共点的,所以我们才会有经过边的限制。

但是还有一个问题,\(low\) 数组有时会不能更新完全,怎么办呢?

按照边 \(1\to 2\to 3\to 4\to 5\to 6\) 的顺序走,仔细分析可以发现,\(low_3\) 没有更新完全的原因是 \(low_2\) 没有更新完全,而不是 \(low_3\gets \min(low_3,low_2)\) 导致的。

所以问题出在已遍历过的情况中。

但其实是没有关系的,\(low\) 数组的目的仅仅是判断当前强连通块是否能够继续向上合并。

所以可以在将 \(low_v\) 换成 \(dfn_v\)。

那么算法的正确性就很显然了,在合法的情况下(\(low\) 的定义)尽可能将当前强连通分量扩大

Tarjan 算法总结的更多相关文章

  1. 有向图强连通分量的Tarjan算法

    有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G ...

  2. 点/边 双连通分量---Tarjan算法

    运用Tarjan算法,求解图的点/边双连通分量. 1.点双连通分量[块] 割点可以存在多个块中,每个块包含当前节点u,分量以边的形式输出比较有意义. typedef struct{ //栈结点结构 保 ...

  3. 割点和桥---Tarjan算法

    使用Tarjan算法求解图的割点和桥. 1.割点 主要的算法结构就是DFS,一个点是割点,当且仅当以下两种情况:         (1)该节点是根节点,且有两棵以上的子树;         (2)该节 ...

  4. Tarjan算法---强联通分量

    1.基础知识 在有向图G,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子 ...

  5. (转载)LCA问题的Tarjan算法

    转载自:Click Here LCA问题(Lowest Common Ancestors,最近公共祖先问题),是指给定一棵有根树T,给出若干个查询LCA(u, v)(通常查询数量较大),每次求树T中两 ...

  6. 强连通分量的Tarjan算法

    资料参考 Tarjan算法寻找有向图的强连通分量 基于强联通的tarjan算法详解 有向图强连通分量的Tarjan算法 处理SCC(强连通分量问题)的Tarjan算法 强连通分量的三种算法分析 Tar ...

  7. [知识点]Tarjan算法

    // 此博文为迁移而来,写于2015年4月14日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102vxnx.html UPD ...

  8. Tarjan 算法&模板

    Tarjan 算法 一.算法简介 Tarjan 算法一种由Robert Tarjan提出的求解有向图强连通分量的算法,它能做到线性时间的复杂度. 我们定义: 如果两个顶点可以相互通达,则称两个顶点强连 ...

  9. 【小白入门向】tarjan算法+codevs1332上白泽慧音 题解报告

    一.[前言]关于tarjan tarjan算法是由Robert Tarjan提出的求解有向图强连通分量的算法. 那么问题来了找蓝翔!(划掉)什么是强连通分量? 我们定义:如果两个顶点互相连通(即存在A ...

  10. 有向图强连通分量 Tarjan算法

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

随机推荐

  1. 文件中pe到内存中pe

    前言 学pe的时候被困扰了很久,终于在某处给我找到了,打算打出来读一读代码 这边我们是从文件中的pe转到运行中的pe,然后再缩小存储到文件的pe 这边我们需要知道内存中对齐是0x1000,文件对齐是0 ...

  2. AWK实现把一个文件根据内容进行分组输出多个文件

    AWK实现把一个文件根据内容进行分组输出多个文件 1.首先准备文件data.txt(分隔符为tab) 第一列省编码,第二列省名称...... 2.将该大文件根据第一列的省编码进行分组并输出到各个省编码 ...

  3. oracle 查询数据库锁及锁处理

    1.数据库锁表查询语句: SELECT SESS.SID, SESS.SERIAL#, LO.ORACLE_USERNAME, LO.OS_USER_NAME, AO.OBJECT_NAME 被锁对象 ...

  4. Verification of WISHBONE I2C Master Core(IRUN+Simvision)

    一.前言 很久没写技术博客了,有些懈怠,生活还得继续折腾.转眼工作一年多,时间越长越发觉得自己知之甚少,当然这跟IC行业技术密集有关.用空余时间在opencores网站上下载些小的IP看看 验证下,让 ...

  5. HTTP协议(2)

    HTTP协议主要是有HTTP请求报文和HTTP响应报文组成的. HTTP请求报文主要分为四个部分: 第一部分:请求行.独占一行,由请求方法.请求url以及协议/版本组成: 第二部分:请求头,第二行到第 ...

  6. Spark: JAVA_HOME is not set

    在Spark项目,sbin目录下的spark-config.sh文件下,最后添加JAVA_HOME的索引. 即可.

  7. python开发--基础知识-(持续更新)

    python基础 --基础: 1, 第一句python - 用cmd 调用--python (路径)+(文件名)) 扩展名是任意的 - 导入模块是,如果不是.py文件,可能导入不成功 - python ...

  8. 【Kata Daily 190927】Counting sheep...(数绵羊)

    题目: Consider an array of sheep where some sheep may be missing from their place. We need a function ...

  9. 前端动画框架GSAP框架随笔

    gsap是目前非常流行的前端动画框架,可以非常轻松构造出复杂的动画效果,这里仅对我实际使用中的一些例子进行总结 官网 示例 文章种所使用代码的在线示例 基础用法 // 声明一个滚动控制器 let ct ...

  10. Python生成csv中文乱码解决办法

    前言 在Linux下面用python进行数据处理,然后输出为csv格式,如果没有中文一切正常,但是如果有中文,就会出现乱码的问题,本篇将讲述怎么处理这个问题 处理过程 原始代码 #!/usr/bin/ ...