AT5200 [AGC038C] LCMs 莫比乌斯反演
LINK:LCMs
随便找了道题练习了一下莫比乌斯反演 式子有两个地方化简错误 导致查了1h的错。
讲一下大致思路 容易发现直接做事\(n^2logn\)的。
观察得到数字集合大小为1e6.
可以设\(b_i\)表示i出现了多少次 再进行计算LCM。
经过一些处理可以开始反演。
可以直接得到一个nlogn的做法。经过更换枚举顺序后 之后nlogn预处理前缀和可以\(sqrt(n)\)求答案。
推式子的时候要小心一点 很容易推错的。
const int MAXN=1000010,INV=(mod+1)>>1;
int n,maxx,top;
int a[MAXN],s[MAXN];
int v[MAXN],p[MAXN],mu[MAXN];
inline void prepare()
{
mu[1]=1;
rep(2,maxx,i)
{
if(!v[i])
{
p[++top]=i;
v[i]=i;mu[i]=-1;
}
rep(1,top,j)
{
if(p[j]>maxx/i)break;
v[p[j]*i]=p[j];
if(v[i]==p[j])break;
mu[p[j]*i]=-mu[i];
}
}
rep(1,maxx,i)
{
int ww=maxx/i;
rep(1,ww,j)s[i]=(s[i]+(ll)j*a[i*j])%mod;
}
}
signed main()
{
freopen("1.in","r",stdin);
get(n);int cnt1=0,cnt2=0;
rep(1,n,i){int get(x);++a[x];maxx=max(maxx,x);}
prepare();int ans=0;
rep(1,maxx,i)
{
cnt1=(cnt1+(ll)a[i]*a[i]%mod*i)%mod;
cnt2=(cnt2+((ll)a[i]*(a[i]-1)/2)%mod*i)%mod;
int ww=maxx/i;
rep(1,ww,j)
ans=(ans+(ll)mu[j]*j*j%mod*i%mod*s[(i*j)]%mod*s[(i*j)])%mod;
}
ans=(ll)(ans-cnt1+mod)*INV%mod;
ans=(ans+cnt2)%mod;put(ans);
return 0;
}
AT5200 [AGC038C] LCMs 莫比乌斯反演的更多相关文章
- hdu1695 GCD(莫比乌斯反演)
题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...
- 莫比乌斯函数筛法 & 莫比乌斯反演
模板: int p[MAXN],pcnt=0,mu[MAXN]; bool notp[MAXN]; void shai(int n){ mu[1]=1; for(int i=2;i<=n;++i ...
- 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2371 Solved: 1143[Submit][Sta ...
- POI2007_zap 莫比乌斯反演
题意:http://hzwer.com/4205.html 同hdu1695 #include <iostream> #include <cstring> #include & ...
- hdu.5212.Code(莫比乌斯反演 && 埃氏筛)
Code Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submi ...
- CSU 1325 莫比乌斯反演
题目大意: 一.有多少个有序数对(x,y)满足1<=x<=A,1<=y<=B,并且gcd(x,y)为p的一个约数: 二.有多少个有序数对(x,y)满足1<=x<=A ...
随机推荐
- 前端老司机常用的方法CSS如何清除浮动?清除浮动的几种方式
在前端开发过程中,我们经常会使用到浮动(float),这个我们即爱又恨的属性.爱,是因为通过浮动,我们能很方便地进行布局:恨,是因为浮动之后遗留下来太多的问题需要解决.下面本篇文章给大家介绍CSS清除 ...
- 线性DP之免费馅饼
题目 思路 线性DP,思路很容易就能想到,f[i][k]数组定义为第i秒在k位置时从上一位置j转移过来的最优解,易得f[i][k]=max(f[i][k],f[i-1][j]+search(i,k)) ...
- centos彻底删除文件夹创建文件
centos彻底删除文件夹.文件命令(centos 新建.删除.移动.复制等命令: 1.新建文件夹 mkdir 文件名 新建一个名为test的文件夹在home下 view source1 mkdir ...
- pythonl操作数据库
目录 今日内容详细 Navicat软件 提示 练习题 pymysql模块 sql注入 navicat可视化界面操作数据库 数据库查询题目讲解(多表操作) python如何操作MySQL(pymysql ...
- 查看sudo的history:配置sudolog
sudo 权力很大,但责任更重大! We trust you have received the usual lecture from the local System Administrator. ...
- mongodb(二):数据库安装,部署(linux)
1.下载安装包 wget http://fastdl.mongodb.org/linux/mongodb-linux-i686-1.8.2.tgz 下载完成后解压缩压缩包 tar zxf mongod ...
- Kubernetes部署通用手册 (支持版本1.19,1.18,1.17,1.16)
Kubernetes平台环境规划 操作环境 rbac 划分(HA高可用双master部署实例) 本文穿插了ha 高可用部署的实例,当前章节设计的是ha部署双master 部署 内网ip 角色 安装软件 ...
- vue 实现滑块验证码
图一为拖拽前效果,图二为拖拽后效果 一.新建文件JcRange.vue,代码如下: 1.模板代码: <template> <div class="jc-component_ ...
- js 分享QQ、QQ空间、微信、微博
//分享QQ好友 function qq(title,url,pic) { var p = { url: 'http://test.qicheyitiao.com',/*获取URL,可加上来自分享到Q ...
- (6)webpack使用babel插件的使用
为什么要使用babel插件? 首先要了解babel插件是干嘛的,随着js的语法规范发展,出现了越来越多的高级语法,但是使用webpack打包的时候,webpack并不能全部理解这些高级语法,需要我们使 ...