LINK:LCMs

随便找了道题练习了一下莫比乌斯反演 式子有两个地方化简错误 导致查了1h的错。

讲一下大致思路 容易发现直接做事\(n^2logn\)的。

观察得到数字集合大小为1e6.

可以设\(b_i\)表示i出现了多少次 再进行计算LCM。

经过一些处理可以开始反演。

可以直接得到一个nlogn的做法。经过更换枚举顺序后 之后nlogn预处理前缀和可以\(sqrt(n)\)求答案。

推式子的时候要小心一点 很容易推错的。

const int MAXN=1000010,INV=(mod+1)>>1;
int n,maxx,top;
int a[MAXN],s[MAXN];
int v[MAXN],p[MAXN],mu[MAXN];
inline void prepare()
{
mu[1]=1;
rep(2,maxx,i)
{
if(!v[i])
{
p[++top]=i;
v[i]=i;mu[i]=-1;
}
rep(1,top,j)
{
if(p[j]>maxx/i)break;
v[p[j]*i]=p[j];
if(v[i]==p[j])break;
mu[p[j]*i]=-mu[i];
}
}
rep(1,maxx,i)
{
int ww=maxx/i;
rep(1,ww,j)s[i]=(s[i]+(ll)j*a[i*j])%mod;
}
}
signed main()
{
freopen("1.in","r",stdin);
get(n);int cnt1=0,cnt2=0;
rep(1,n,i){int get(x);++a[x];maxx=max(maxx,x);}
prepare();int ans=0;
rep(1,maxx,i)
{
cnt1=(cnt1+(ll)a[i]*a[i]%mod*i)%mod;
cnt2=(cnt2+((ll)a[i]*(a[i]-1)/2)%mod*i)%mod;
int ww=maxx/i;
rep(1,ww,j)
ans=(ans+(ll)mu[j]*j*j%mod*i%mod*s[(i*j)]%mod*s[(i*j)])%mod;
}
ans=(ll)(ans-cnt1+mod)*INV%mod;
ans=(ans+cnt2)%mod;put(ans);
return 0;
}

AT5200 [AGC038C] LCMs 莫比乌斯反演的更多相关文章

  1. hdu1695 GCD(莫比乌斯反演)

    题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...

  2. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

  3. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  4. Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)

    题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...

  5. 莫比乌斯函数筛法 & 莫比乌斯反演

    模板: int p[MAXN],pcnt=0,mu[MAXN]; bool notp[MAXN]; void shai(int n){ mu[1]=1; for(int i=2;i<=n;++i ...

  6. 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2371  Solved: 1143[Submit][Sta ...

  7. POI2007_zap 莫比乌斯反演

    题意:http://hzwer.com/4205.html 同hdu1695 #include <iostream> #include <cstring> #include & ...

  8. hdu.5212.Code(莫比乌斯反演 && 埃氏筛)

    Code Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submi ...

  9. CSU 1325 莫比乌斯反演

    题目大意: 一.有多少个有序数对(x,y)满足1<=x<=A,1<=y<=B,并且gcd(x,y)为p的一个约数: 二.有多少个有序数对(x,y)满足1<=x<=A ...

随机推荐

  1. 轻松让HTML5可以显示桌面通知Notification非常实用

    使用Notification的流程 1.检查浏览器是否支持Notification2.检查浏览器的通知权限3.如果权限不够则申请获取权限4.创建消息通知5.展示消息通知 Notification AP ...

  2. 在页面制作的时候常用的html页面滚动加载,可视区域判断方法

    演示图 考虑2个情况一种情况初始状态下 滚动到在中间区域的时候,这时上半部分看不见的元素就不给字体添加红色一种情况是,从头向下看的. 代码 .ss li { margin: 40px; } <d ...

  3. 20 个 CSS高级样式技巧汇总

    使用技巧会让人变的越来越懒,没错,我就是想让你变懒.下面是我收集的CSS高级技巧,希望你懒出境界. 1. 黑白图像 这段代码会让你的彩色照片显示为黑白照片,是不是很酷? img.desaturate ...

  4. 「疫期集训day7」周期

    我们成功入侵了圣康坦,屋子里到处都是面包,食物,水...现在我们的目标就在眼前----亚眠------鲁道登夫攻势中损失惨重的德国精英兵 今天考试考出了历史最低,原因在于T1签到题挂了,ull真的毒瘤 ...

  5. Linux多任务编程之三:exec函数族及其基础实验(转)

    来源:CSDN  作者:王文松  转自:Linux公社 exec函数族 函数族说明 fork() 函数用于创建一个新的子进程,该子进程几乎复制了父进程的全部内容,但是,这个新创建的子进程如何执行呢?e ...

  6. day23 常用模块(中)

    目录 一.json&pickle模块 1 什么是序列化 2 为什么要序列化 2.1 持久保存状态 2.2 跨平台数据交互 3 如何序列化 二.shelve模块 三.configparser模块 ...

  7. 数据可视化之powerBI基础(三)编辑交互,体验更灵活的PowerBI可视化

    https://zhuanlan.zhihu.com/p/64412190 PowerBI可视化与传统图表的一大区别,就是可视化分析是动态的,通过页面上筛选.钻取.突出显示等交互功能,可以快速进行访问 ...

  8. Elasticsearch备份数据

    Elasticsearch备份数据 1.建立备份目录 POST _snapshot/my_backup/ { "type": "fs", "setti ...

  9. 关于python爬取异步ajax数据的一些见解

    我们在利用python进行爬取数据的时候,一定会遇到这样的情况,在浏览器中打开能开到所有数据,但是利用requests去爬取源码得到的却是没有数据的页面框架. 出现这样情况,是因为别人网页使用了aja ...

  10. OSCP Learning Notes - Buffer Overflows(2)

    Finding the Offset 1. Use the Metasploite pattern_create.rb tool to create 5900 characters. /usr/sha ...