本文始发于个人公众号:TechFlow,原创不易,求个关注

今天是pandas数据处理专题的第四篇文章,我们一起来聊聊DataFrame中的索引。

上一篇文章当中我们介绍了DataFrame数据结构当中一些常用的索引的使用方法,比如iloc、loc以及逻辑索引等等。今天的文章我们来看看DataFrame的一些基本运算

数据对齐

我们可以计算两个DataFrame的加和,pandas会自动将这两个DataFrame进行数据对齐,如果对不上的数据会被置为Nan(not a number)。

首先我们来创建两个DataFrame:

import numpy as np
import pandas as pd df1 = pd.DataFrame(np.arange(9).reshape((3, 3)), columns=list('abc'), index=['1', '2', '3']) df2 = pd.DataFrame(np.arange(12).reshape((4, 3)), columns=list('abd'), index=['2', '3', '4', '5'])

得到的结果和我们设想的一致,其实只是通过numpy数组创建DataFrame,然后指定index和columns而已,这应该算是很基础的用法了。

然后我们将两个DataFrame相加,会得到:

我们发现pandas将两个DataFrame加起来合并了之后,凡是没有在两个DataFrame都出现的位置就会被置为Nan。这其实是很有道理的,实际上不只是加法,我们可以计算两个DataFrame的加减乘除的四则运算都是可以的。如果是计算两个DataFrame相除的话,那么除了对应不上的数据会被置为Nan之外,除零这个行为也会导致异常值的发生(可能不一定是Nan,而是inf)。

fill_value

如果我们要对两个DataFrame进行运算,那么我们当然不会希望出现空值。这个时候就需要对空值进行填充了,我们直接使用运算符进行运算是没办法传递参数进行填充的,这个时候我们需要使用DataFrame当中为我们提供的算术方法

DataFrame当中常用的运算符有这么几种:

add、sub、div这些我们都很好理解,那么这里的radd、rsub方法又是什么意思呢,为什么前面要加上一个r呢?

看起来费解,但是说白了一文不值,radd是用来翻转参数的。举个例子,比如说我们希望得到DataFrame当中所有元素的倒数,我们可以写成1 / df。由于1本身并不是一个DataFrame,所以我们不能用1来呼叫DataFrame当中的方法,也就不能传递参数,为了解决这种情况,我们可以把1 / df写成df.rdiv(1),这样我们就可以在其中传递参数了。

由于在算除法的过程当中发生了除零,所以我们得到了一个inf,它表示无穷大。

我们可以在add、div这些方法当中传入一个fill_value的参数,这个参数可以在计算之前对于一边出现缺失值的情况进行填充。也就是说对于对于只在一个DataFrame中缺失的位置会被替换成我们指定的值,如果在两个DataFrame都缺失,那么依然还会是Nan

我们对比下结果就能发现了,相加之后的(1, d), (4, c)以及(5, c)的位置都是Nan,因为df1和df2两个DataFrame当中这些位置都是空值,所以没有被填充。

fill_value这个参数在很多api当中都有出现,比如reindex等,用法都是一样的,我们在查阅api文档的时候可以注意一下。

那么对于这种填充了之后还出现的空值我们应该怎么办呢?难道只能手动找到这些位置进行填充吗?当然是不现实的,pandas当中还为我们提供了专门解决空值的api。

空值api

在填充空值之前,我们首先要做的是发现空值。针对这个问题,我们有isna这个api,它会返回一个bool型的DataFrame,DataFrame当中的每一个位置表示了原DataFrame对应的位置是否是空值。

dropna

当然只是发现是否是空值肯定是不够的,我们有时候会希望不要空值的出现,这个时候我们可以选择drop掉空值。针对这种情况,我们可以使用DataFrame当中的dropna方法。

我们发现使用了dropna之后,出现了空值的行都被抛弃了。只保留了没有空值的行,有时候我们希望抛弃是的列而不是行,这个时候我们可以通过传入axis参数进行控制。

这样我们得到的就是不含空值的列,除了可以控制行列之外,我们还可以控制执行drop的严格程度。我们可以通过how这个参数来判断,how支持两种值传入,一种是'all',一种是'any'。all表示只有在某一行或者是某一列全为空值的时候才会抛弃,any与之对应就是只要出现了空值就会抛弃。默认不填的话认为是any,一般情况下我们也用不到这个参数,大概有个印象就可以了。

fillna

pandas除了可以drop含有空值的数据之外,当然也可以用来填充空值,事实上这也是最常用的方法。

我们可以很简单地传入一个具体的值用来填充:

fillna会返回一个新的DataFrame,其中所有的Nan值会被替换成我们指定的值。如果我们不希望它返回一个新的DataFrame,而是直接在原数据进行修改的话,我们可以使用inplace参数,表明这是一个inplace的操作,那么pandas将会在原DataFrame上进行修改。

df3.fillna(3, inplace=True)

除了填充具体的值以外,我们也可以和一些计算结合起来算出来应该填充的值。比如说我们可以计算出某一列的均值、最大值、最小值等各种计算来填充。fillna这个函数不仅可以使用在DataFrame上,也可以使用在Series上,所以我们可以针对DataFrame中的某一列或者是某些列进行填充:

除了可以计算出均值、最大最小值等各种值来进行填充之外,还可以指定使用缺失值的前一行或者是后一行的值来填充。实现这个功能需要用到method这个参数,它有两个接收值,ffill表示用前一行的值来进行填充,bfill表示使用后一行的值填充。

我们可以看到,当我们使用ffill填充的时候,对于第一行的数据来说由于它没有前一行了,所以它的Nan会被保留。同样当我们使用bfill的时候,最后一行也无法填充。

总结

今天的文章当中我们主要介绍了DataFrame的一些基本运算,比如最基础的四则运算。在进行四则运算的时候由于DataFrame之间可能存在行列索引不能对齐的情况,这样计算得到的结果会出现空值,所以我们需要对空值进行处理。我们可以在进行计算的时候通过传入fill_value进行填充,也可以在计算之后对结果进行fillna填充。

在实际的运用当中,我们一般很少会直接对两个DataFrame进行加减运算,但是DataFrame中出现空置是家常便饭的事情。因此对于空值的填充和处理非常重要,可以说是学习中的重点,大家千万注意。

今天的文章到这里就结束了,如果喜欢本文的话,请来一波素质三连,给我一点支持吧(关注、在看、点赞)。

本文使用 mdnice 排版

pandas | 如何在DataFrame中通过索引高效获取数据?的更多相关文章

  1. pandas,对dataFrame中某一个列的数据进行处理

    背景:dataFrame的数据,想对某一个列做逻辑处理,生成新的列,或覆盖原有列的值   下面例子中的df均为pandas.DataFrame()的数据   1.增加新列,或更改某列的值 df[&qu ...

  2. 160803、如何在ES6中管理类的私有数据

    如何在ES6中管理类的私有数据?本文为你介绍四种方法: 在类的构造函数作用域中处理私有数据成员 遵照命名约定(例如前置下划线)标记私有属性 将私有数据保存在WeakMap中 使用Symbol作为私有属 ...

  3. WebForm.aspx 页面通过 AJAX 访问WebForm.aspx.cs类中的方法,获取数据

    WebForm.aspx 页面通过 AJAX 访问WebForm.aspx.cs类中的方法,获取数据 WebForm1.aspx 页面 (原生AJAX请求,写法一) <%@ Page Langu ...

  4. WebForm.aspx 页面通过 AJAX 访问WebForm.aspx.cs类中的方法,获取数据(转)

    WebForm.aspx 页面通过 AJAX 访问WebForm.aspx.cs类中的方法,获取数据 WebForm1.aspx 页面 (原生AJAX请求,写法一) <%@ Page Langu ...

  5. VUE通过索引值获取数据不渲染的问题

    问题:vue里面当通过索引值获取数据时,ajax数据成功返回,但是在火狐下不渲染 解决:

  6. pandas 对数据帧DataFrame中数据的增删、补全及转换操作

    1.创建数据帧 import pandas as pd df = pd.DataFrame([[1, 'A', '3%' ], [2, 'B'], [3, 'C', '5%']], index=['r ...

  7. pandas | 详解DataFrame中的apply与applymap方法

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是pandas数据处理专题的第5篇文章,我们来聊聊pandas的一些高级运算. 在上一篇文章当中,我们介绍了panads的一些计算方法, ...

  8. pandas 学习 第14篇:索引和选择数据

    数据框和序列结构中都有轴标签,轴标签的信息存储在Index对象中,轴标签的最重要的作用是: 唯一标识数据,用于定位数据 用于数据对齐 获取和设置数据集的子集. 本文重点关注如何对序列(Series)和 ...

  9. php高效获取数据分页

    mysql.php 获取数据库中的记录,全然个人经验总结,仅供參考! <? php /** *PHP+MYSQL数据库基本功能 *http://blog.csdn.net/yown */ ### ...

随机推荐

  1. 图灵学院-微服务11-分布式链路跟踪Sleuth详解

    当客户端访问到第一个service 1的时候,会生成当前链路追踪的一个全局的trance ID,在一次调用过Service1--Service2--Service3--Service4时,整个服务访问 ...

  2. set dict tuple 内置方法

    今日内容 * 元祖及内置方法* 字典及内置方法* 集合及内置方法* 字符编码 元祖tuple 与列表类似可以存多个值,但是不同的是元祖本身不能被修改 ```python一:基本使用:tuple 1 用 ...

  3. 在PHPstorm中使用数组短语法[],出现红色波浪

    在PHPstorm中使用数组短语法[],出现红色波浪 1. 在tp3.2.3项目中使用数组短语法[],报错如下错误: Short array syntax is allowed in PHP 5.4 ...

  4. 利用xampp集成环境搭建pikachu靶场及部分问题解决

    xampp的环境部署 1.本地服务器的搭建 首先要到官网下载xampp https://www.apachefriends.org/zh_cn/index.html 有各个不同的系统版本,这里我们选择 ...

  5. Python基础语法一

    所有内容都在代码上,有相关代码注释 # #代表注释 # 区分大小写.以回车换行结束 # 多行编写可以使用反斜杠 \ # 缩进代表一个代码块 #数值 #int类型可以使用下划线分割 c=123_456_ ...

  6. sublime清空控制台

    解决方法 – 只需运行print('\n'*100)打印100个换行符,您将无法看到任何以前的输出,除非你向上滚动一些距离.

  7. 如何用HMS Nearby Service给自己的APP开发一个名片交换功能?

      在工作和生活中,遇见新的同事或者合作伙伴,交换名片是一个常见的用户需求,纸质名片常忘带.易丢失,是客户的一个痛点.因此,市场上出现了很多交换电子名片的APP和小程序.那么,如何给自己的APP开发一 ...

  8. navicat连接vagrant中的数据库

  9. MySQL CodeFirst的配置与注意事项

    mysql+ef的配置相比较mssql+ef来说复杂一些.我的感受就是配置难度在于插件版本造成的各种不兼容问题.另外参考了很多博客,将多个博客里的经验综合才得以实现,因为不是每个人的操作都和那些博客作 ...

  10. Django---进阶2

    目录 数据的查,改,删 django orm中如何创建表关系 django请求生命周期流程图(必会) 路由层 路由匹配 无名分组 有名分组 无名有名是否可以混合使用 反向解析 作业 数据的查,改,删 ...