• 题意:你要买\(n\)份午饭,你可以选择自己去买,或者叫外卖,每份午饭\(i\)自己去买需要消耗时间\(b_i\),叫外卖需要\(a_i\),外卖可以同时送,自己只能买完一份后回家再去买下一份,问最少花多少时间能使午餐到家.

  • 题解:我们可以用结构体记录每份午餐的外卖所需时间和自己拿的时间,然后贪心,对于某一份午餐,如果我们选择用外卖送,那么所有\(a_i\)比这个外卖时间小的在这个外卖送到时必然都能送到,所以我们可以对外卖时间进行排序,然后枚举每份午餐,每次让枚举位置和之前的位置用外卖送,枚举位置之后的自己跑去买,所以我们可以用后缀和记录自己买的时间,在外卖送的时间和自己买的时间之和之间取个最小值维护答案即可.

  • 代码:

    struct misaka{
    ll a,b;
    bool operator < (const misaka & mikoto) const{
    if(a!=mikoto.a) return a<mikoto.a;
    return b<mikoto.b;
    }
    }e[N]; int t;
    int n;
    ll cnt[N]; int main() {
    ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    cin>>t;
    while(t--){
    cin>>n; for(int i=1;i<=n;++i) cin>>e[i].a;
    for(int i=1;i<=n;++i) cin>>e[i].b; sort(e+1,e+1+n); for(int i=n;i>=1;--i) cnt[i]=cnt[i+1]+e[i].b; ll ans=1e18; for(int i=0;i<=n;++i){
    ans=min(ans,max(e[i].a,cnt[i+1]));
    }
    for(int i=1;i<=n;++i) cnt[i]=0;
    cout<<ans<<'\n'; } return 0;
    }

Codeforces Round #681 (Div. 2, based on VK Cup 2019-2020 - Final) C. The Delivery Dilemma (贪心,结构体排序)的更多相关文章

  1. Codeforces Round #681 (Div. 2, based on VK Cup 2019-2020 - Final)【ABCDF】

    比赛链接:https://codeforces.com/contest/1443 A. Kids Seating 题意 构造一个大小为 \(n\) 的数组使得任意两个数既不互质也不相互整除,要求所有数 ...

  2. Codeforces Round #681 (Div. 1, based on VK Cup 2019-2020 - Final) B. Identify the Operations (模拟,双向链表)

    题意:给你一组不重复的序列\(a\),每次可以选择一个数删除它左边或右边的一个数,并将选择的数append到数组\(b\)中,现在给你数组\(b\),问有多少种方案数得到\(b\). 题解:我们可以记 ...

  3. Codeforces Round #681 (Div. 2, based on VK Cup 2019-2020 - Final) D. Extreme Subtraction (贪心)

    题意:有一个长度为\(n\)的序列,可以任意取\(k(1\le k\le n)\),对序列前\(k\)项或者后\(k\)减\(1\),可以进行任意次操作,问是否可以使所有元素都变成\(0\). 题解: ...

  4. Codeforces Round #681 (Div. 2, based on VK Cup 2019-2020 - Final) B. Saving the City (贪心,模拟)

    题意:给你一个\(01\)串,需要将所有的\(1\)给炸掉,每次炸都可以将一整个\(1\)的联通块炸掉,每炸一次消耗\(a\),可以将\(0\)转化为\(1\),消耗\(b\),问将所有\(1\)都炸 ...

  5. Codeforces Round #681 (Div. 2, based on VK Cup 2019-2020 - Final) A. Kids Seating (规律)

    题意:给你一个正整数\(n\),在\([1,4n]\)中找出\(n\)个数,使得这\(n\)个数中的任意两个数不互质且不能两两整除. 题解:这题我是找的规律,从\(4n\)开始,往前取\(n\)个偶数 ...

  6. Codeforces Round 623(Div. 2,based on VK Cup 2019-2020 - Elimination Round,Engine)D. Recommendations

    VK news recommendation system daily selects interesting publications of one of n disjoint categories ...

  7. Codeforces Round #623 (Div. 1, based on VK Cup 2019-2020 - Elimination Round, Engine)A(模拟,并查集)

    #define HAVE_STRUCT_TIMESPEC #include<bits/stdc++.h> using namespace std; pair<]; bool cmp( ...

  8. Codeforces Round #623 (Div. 2, based on VK Cup 2019-2020 - Elimination Round, Engine)

    A. Dead Pixel(思路) 思路 题意:给我们一个m*n的表格,又给了我们表格中的一个点a,其坐标为(x, y),问在这个表格中选择一个不包括改点a的最大面积的矩形,输出这个最大面积 分析:很 ...

  9. Codeforces Round #623 (Div. 2, based on VK Cup 2019-2020 - Elimination Round, Engine) C. Restoring

    C. Restoring Permutation time limit per test1 second memory limit per test256 megabytes inputstandar ...

随机推荐

  1. 十八:SQL注入之堆叠及绕WAF

    堆叠查询注入 (双查询注入) stacked injections(堆叠注入)从名词的含义就可以看到是一堆的SQL语句一起执行,而在真实的运用中也是这样的,我们知道在mysql中,主要是命令行中,每一 ...

  2. 【项目实践】手把手带你搞定SSM

    以项目驱动学习,以实践检验真知 前言 现在使用Java后端开发使用的技术栈基本上比较统一:Spring + SpringMVC + Mybatis,即大家常说的SSM.虽然现在流行的做法是使用Spri ...

  3. xtrabackup不完全恢复

    例如,在2014年6月26日下午14:00的时候有人误操作drop掉了一张表,由于库不是很大,并且为测试库,并没有访问,这个时候,我们可以进行基于位置和时间点的不完全恢复 先找到早上的备份,查看那xt ...

  4. 【Linux】Linux进程间通信的几种方式

    一.进程间通信的目的 数据传输:一个进程需要将它的数据发送给另一个进程,发送的数据量在一个字节到几M字节之间 共享数据:多个进程要操作共享数据,一个进程对共享数据 信息传递:一个进程需要向另一个进程发 ...

  5. Xctf攻防世界—crypto—Normal_RSA

    下载压缩包后打开,看到两个文件flag.enc和pubkey.pem,根据文件名我们知道应该是密文及公钥 这里我们使用一款工具进行解密 工具链接:https://github.com/3summer/ ...

  6. 基于Asp.Net Core 5.0依赖Quartz.Net框架编写的任务调度web管理平台

    源码地址: https://github.com/246850/Calamus.TaskScheduler 演示地址:http://47.101.47.193:1063/ 1.Quartz.NET框架 ...

  7. 缓存淘汰算法 LRU 和 LFU

    LRU (Least Recently Used), 即最近最少使用用算法,是一种常见的 Cache 页面置换算法,有利于提高 Cache 命中率. LRU 的算法思想:对于每个页面,记录该页面自上一 ...

  8. SpringMVC下关于静态资源访问

    SpringMVC静态资源访问 聊一聊关于静态资源的访问问题 首先,我们要对web.xml里面的DispatcherServlet进行设置 <!-- 中央调度器--> <servle ...

  9. jQuery 勾选启用输入框

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  10. POJ 3461__KMP算法

    [题目描述] 法国作家乔治·佩雷克(Georges Perec,1936-1982)曾经写过一本书,<敏感字母>(La disparition),全篇没有一个字母'e'.他是乌力波小组(O ...