AGC043 B题题解
有的时候,碰到一道题,要给自己先设立部分分,再去想如何把部分分推广到一般情况。这题就是绝佳的例子。
不妨将\(a_i\)用\(a_i - 1\)替代,这样就变成了\(a_i \in \{ 0, 1, 2\}\)了。
我们给自己设立的部分分是\(a_i \in \{ 0, 1 \}\)时怎么做。
我们会发现\(x_{i, j} \equiv x_{i - 1, j} + x_{i - 1, j + 1} (\bmod 2)\)了。于是我们在\(\bmod 2\)意义下计算出\(x_{n, 1}\)即可。
用简单的归纳法即可得到\(x_{n, 1} \equiv \sum_{i = 1}^{n} {{{n - 1} \choose {i - 1}} a_i} (\bmod 2)\)。
我们接下来的工作是研究这个做法如何推广。我们发现这个做法能够计算出\(x_{n, 1} \mod 2\)的值。如果发现它模2余1,就可以唯一确定它是1。否则我们要辨别它到底是\(0\)还是\(2\)。
如果\(x_{1, 1}, ... x_{n, 1}\)中有一个\(1\)的话,分析\(x_{i, 1}, ..., x_{i, n + 1 - i}\)这些数。如果它有一些\(1\)且不全是\(1\)的话,那么\(x_{i + 1, 1}, ..., x_{i + 1, n - i}\)这一行也必定有\(1\)。如果每一行都满足这一行的数必定有\(1\)的话,那么\(x_{n, 1} = 1\),与我们之前的假设矛盾。因此我们一定有一行全是\(1\),这样才能生成一个没有\(1\)的一行。在这一行之后所有数都变成\(0\)了,所以\(x_{n, 1} = 0\)。
否则我们又可以假设\(x_{1, 1}, ..., x_{n, 1}\)全部不为\(1\),将它们通通除以\(2\)后再使用部分分的算法即可!、
时间复杂度为\(O(n)\),可以轻松通过此题。
代码如下:
#include <bits/stdc++.h>
#define debug(x) cerr << #x << " " << (x) << endl
using namespace std;
const int N = 1000005;
template <class T>
void read (T &x) {
int sgn = 1;
char ch;
x = 0;
for (ch = getchar(); (ch < '0' || ch > '9') && ch != '-'; ch = getchar()) ;
if (ch == '-') ch = getchar(), sgn = -1;
for (; '0' <= ch && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0';
x *= sgn;
}
template <class T>
void write (T x) {
if (x < 0) putchar('-'), write(-x);
else if (x < 10) putchar(x + '0');
else write(x / 10), putchar(x % 10 + '0');
}
char str[N];
int n, a[N];
int main () {
read(n), n--;
scanf("%s", str);
for (int i = 0; i <= n; i++) a[i] = str[i] - '1';
int ans = 0;
for (int i = 0; i <= n; i++) {
if ((n & i) == i) ans = (ans + a[i]) % 2;
}
if (!ans) {
bool flag = true;
for (int i = 0; i <= n; i++) {
if (a[i] == 1) flag = false;
}
if (flag) {
int x = 0;
for (int i = 0; i <= n; i++) a[i] >>= 1;
for (int i = 0; i <= n; i++) {
if ((n & i) == i) x = (x + a[i]) % 2;
}
if (x) ans = 2;
}
}
write(ans), putchar('\n');
return 0;
}
AGC043 B题题解的更多相关文章
- ACM ICPC 2018 青岛赛区 部分金牌题题解(K,L,I,G)
目录: K Airdrop I Soldier Game L Sub-cycle Graph G Repair the Artwork ———————————————————— ps:楼主脑残有点严 ...
- 10.9 guz模拟题题解
感谢@guz 顾z的题题解 考试共三道题,其中 第一题help共10个测试点,时间限制为 1000ms,空间限制为 256MB. 第二题escape共20个测试点,时间限制为1000ms2000ms, ...
- 【ZROI 537】贪心题 题解
[ZROI 537]贪心题 题解 Link Solution 最大的一边直接放到一起贪心即可 着重讲小的一边 已知对于二分图匹配,其答案即为最大流 令时间集合为 \(T = {1,2,3,\dots, ...
- Codeforces Round #612 (Div. 2) 前四题题解
这场比赛的出题人挺有意思,全部magic成了青色. 还有题目中的图片特别有趣. 晚上没打,开virtual contest打的,就会前三道,我太菜了. 最后看着题解补了第四道. 比赛传送门 A. An ...
- Hello2020(前四题题解)
Hello,2020!新的一年从快乐的掉分开始…… 我在m3.codeforces.com这个镜像网站中一开始还打不开D题,我…… 还有话说今天这场为什么那么多二分. 比赛传送门:https://co ...
- Codeforces Round #524 (Div. 2)(前三题题解)
这场比赛手速场+数学场,像我这样读题都读不大懂的蒟蒻表示呵呵呵. 第四题搞了半天,大概想出来了,但来不及(中途家里网炸了)查错,于是我交了两次丢了100分.幸亏这次没有掉rating. 比赛传送门:h ...
- Educational Codeforces Round 53 (Rated for Div. 2) (前五题题解)
这场比赛没有打,后来补了一下,第五题数位dp好不容易才搞出来(我太菜啊). 比赛传送门:http://codeforces.com/contest/1073 A. Diverse Substring ...
- Lyft Level 5 Challenge 2018 - Final Round (Open Div. 2) (前三题题解)
这场比赛好毒瘤哇,看第四题好像是中国人出的,怕不是dllxl出的. 第四道什么鬼,互动题不说,花了四十五分钟看懂题目,都想砸电脑了.然后发现不会,互动题从来没做过. 不过这次新号上蓝名了(我才不告诉你 ...
- Codeforces Round #519 by Botan Investments(前五题题解)
开个新号打打codeforces(以前那号玩废了),结果就遇到了这么难一套.touristD题用了map,被卡掉了(其实是对cf的评测机过分自信),G题没过, 700多行代码,码力惊人.关键是这次to ...
随机推荐
- ubuntu服务器启动过程中重启卡死的问题解决
在grub默认参数当中添加 GRUB_RECORDFAIL_TIMEOUT=0 写于: 2014年07月23日 更新于: 2015年03月24日
- matlab 向量操作作业
写出下列语句的计算结果及作用 clear 清除所有变量 clc 清屏 A = [2 5 7 1 3 4]; 创建行向量并赋值 odds = 1:2:length(A); 冒号操 ...
- Golang 实现 Redis(6): 实现 pipeline 模式的 redis 客户端
本文是使用 golang 实现 redis 系列的第六篇, 将介绍如何实现一个 Pipeline 模式的 Redis 客户端. 本文的完整代码在Github:Godis/redis/client 通常 ...
- 分布式监控系统之Zabbix 使用SNMP、JMX信道采集数据
前文我们了解了zabbix的被动.主动以及web监控相关话题,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/14024212.html:今天我们来了解下zabb ...
- 吉他软件Guitar Pro入门
Guitar Pro是一款优秀的吉他学习软件,初学者可以依靠其学习理论知识,也可以通过和弦添加.曲谱导出等功能来提升弹奏能力.今天,小编就给大家简略地介绍下吉他软件Guitar Pro. 乐谱编辑功能 ...
- 类虚拟机软件CrossOver是什么?它的优势在哪里?
虚拟机软件对于很多人来说已经不是一个陌生的词汇了.我们可以通过软件来模拟具有完整硬件系统功能的计算机系统.比如我们可以在Mac OS系统上模拟Windows 7 的系统,以此来安装我们想要使用的应用程 ...
- jmeter录制请求
用了一段时间的jmeter感觉比LR方便很多,界面也比较简洁,开源免费,配置环境也方便,LR简直没法比,但唯一的是功能没有LR强大,毕竟是免费的,要求别那么高. 下面开始进入正题,配置环境和下载就不多 ...
- P2943 [USACO09MAR]Cleaning Up G
一句话题意:将一个数列分成若干段,每段的不和谐度为该段内不同数字数量的平方,求不和谐度之和的最小值. 令 \(f_i\) 表示前 \(i\) 个数的最小答案,很容易就能写出暴力转移方程:\(f_i=\ ...
- JUC详解--【Foam番茄】
1.什么是JUC java.util 工具包 业务:普通的线程代码 Thread Runnable 没有返回值,效率相比于 Callable 相对较低! 2.线程和进程 进程:一个程序,QQ.exe ...
- Kafka分布式查询引擎
1.概述 Kafka是一个分布式消息中间件系统,里面存储着实际场景中的数据.Kafka原生是不支持点查询的,如果我们想对存储在Topic中的数据进行查询,可能需要对Topic中的数据进行消费落地,然后 ...