题面

CF1389F Bicolored Segments

给 \(n\) 条线段 \([l_i,r_i]\),每条有个颜色 \(t_i\in\{0,1\}\),求最多选出多少条线段,使没有不同颜色的线段相交。

数据范围:\(1\le n\le 2\cdot 10^5\),\(1\le l_i\le r_i\le 10^9\)。


蒟蒻语

昨天蒟蒻打 CF,发挥得不错,迷惑回橙。但是蒟蒻没做出这题,赛后想了好久感觉这题很奇妙,于是蒻蒻地来写篇题解。


蒟蒻解一

线段树维护 dp。

先将每条线段 \(l_i,r_i\) 离散化,坐标范围为 \([0,cnt]\)。

设 \(f(i,j,k)\) 表示看了 \([0,i]\),\([j+1,i]\) 的线段颜色都为 \(k\) 的最多线段数。

\[j<i:f(i,j,k)=f(i-1,j,k)+\sum_{x=1}^{n}[l_x>j][r_x=i]
\]
\[f(i,i,k)=\max[\max_{j=0}^{i-1}f(i,j,!k),\max_{j=0}^{i-1}f(i,j,k)]
\]

那么答案是 \(\max_{j=0}^{cnt}f(cnt,j,0/1)\)。

设 \(ca_i\) 这个 vector 存放 \(r_x=i\) 的 \(x\)。

所以可以用一个线段树代替 \(j\) 维,把 \(i\) 维滚掉,实现上述dp。

时间复杂度 \(\Theta(n\log n)\)。

代码

#include <bits/stdc++.h>
using namespace std; //Start
typedef long long ll;
typedef double db;
#define mp(a,b) make_pair(a,b)
#define x first
#define y second
#define be(a) a.begin()
#define en(a) a.end()
#define sz(a) int((a).size())
#define pb(a) push_back(a)
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f; //Data
const int N=2e5,M=(N<<1)+1;
int n,l[N],r[N],t[N],cnt,b[M],ans;
vector<int> ca[M]; //Segmenttree
const int T=M<<2;
#define lk k<<1
#define rk k<<1|1
struct Segmenttree{ //线段树,下标为坐标,维护区间加、全局最大值
int mx[T],mk[T];
void pushup(int k){mx[k]=max(mx[lk],mx[rk]);}
void pm(int k,int v){mk[k]+=v,mx[k]+=v;}
void pushdown(int k){if(mk[k]) pm(lk,mk[k]),pm(rk,mk[k]),mk[k]=0;}
void fix(int x,int y,int v,int k,int l,int r){
if(x<=l&&r<=y) return pm(k,v);
pushdown(k);
int mid=(l+r)>>1;
if(mid>=x) fix(x,y,v,lk,l,mid);
if(mid<y) fix(x,y,v,rk,mid+1,r);
pushup(k);
}
int Mx(){return mx[1];}
void Print(int k,int l,int r){
if(l==r){cout<<mx[k]<<' ';return;}
pushdown(k);
int mid=(l+r)>>1;
Print(lk,l,mid),Print(rk,mid+1,r);
}
}g[2]; //Main
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n;
for(int i=0;i<n;i++){
cin>>l[i]>>r[i]>>t[i],--t[i];
b[cnt++]=l[i],b[cnt++]=r[i];
}
b[cnt++]=0,sort(b,b+cnt),cnt=unique(b,b+cnt)-b;
for(int i=0;i<n;i++){
l[i]=lower_bound(b,b+cnt,l[i])-b;
r[i]=lower_bound(b,b+cnt,r[i])-b;
ca[r[i]].pb(i);
}
for(int i=1;i<cnt;i++){
for(int x:ca[i]) g[t[x]].fix(0,l[x]-1,1,1,0,cnt);
g[0].fix(i,i,g[1].Mx(),1,0,cnt),g[1].fix(i,i,g[0].Mx(),1,0,cnt);//这么写也是可以的
}
cout<<max(g[0].Mx(),g[1].Mx())<<'\n';
return 0;
}

蒟蒻解二

萌新初学 OI 的时候,有一个贪心问题:求最多线段互不相交。做法是右端点再左端点双关键字排序,然后贪心取舍一下。

这题可以同样地骚操作:

初始化答案为 \(n\)。用两个 multiset 记录两种颜色分别选了哪些线段。

顺序枚举排序了的线段,如果没有选了的线段与当前线段异色并重合,那么蒟蒻们可以很开心地选上这条线段。

否则把右端点在当前线段左端点右边并且最近的异色线段从 multiset 中删除,不往 multiset 中加入当前线段,把答案 \(-1\),表示一个对抗抵消的过程。

比如加了一条 \(0\) 线段,然后再加一条 \(1\) 线段与它抵消。这时如果来 \(2\) 条 \(1\) 线段,相当于选了 \(3\) 条 \(1\) 线段;如果来 \(2\) 条 \(0\) 线段,相当于选了 \(3\) 条 \(0\) 线段。

这种思想类似求序列众数时的对抗抵消选举和模拟网络流反悔推流。

时间复杂度 \(\Theta(n\log n)\)。

代码

#include <bits/stdc++.h>
using namespace std; //Start
typedef long long ll;
typedef double db;
#define mp(a,b) make_pair(a,b)
#define x first
#define y second
#define be(a) a.begin()
#define en(a) a.end()
#define sz(a) int((a).size())
#define pb(a) push_back(a)
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f; //Data
const int N=2e5;
int n,ans;
struct S{int l,r,t;}a[N];
multiset<int> g[2]; //Main
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n,ans=n;
for(int i=0;i<n;i++)
cin>>a[i].l>>a[i].r>>a[i].t,--a[i].t;
sort(a,a+n,[&](const S p,const S q){return p.r==q.r?p.l<q.l:p.r<q.r;});
for(int i=0;i<n;i++)
if(g[!a[i].t].lower_bound(a[i].l)==en(g[!a[i].t])) g[a[i].t].insert(a[i].r);
else ans--,g[!a[i].t].erase(g[!a[i].t].lower_bound(a[i].l));
cout<<ans<<'\n';
return 0;
}

祝大家学习愉快!

题解-CF1389F Bicolored Segments的更多相关文章

  1. Codeforces Educational Round 92 赛后解题报告(A-G)

    Codeforces Educational Round 92 赛后解题报告 惨 huayucaiji 惨 A. LCM Problem 赛前:A题嘛,总归简单的咯 赛后:A题这种**题居然想了20m ...

  2. CodeForces 430A Points and Segments (easy)(构造)题解

    题意:之前愣是没看懂题意...就是给你n个点的坐标xi,然后还规定了Li,Ri,要求给每个点染色,每一组L,R内的点红色和黑色的个数不能相差大于1个,问你能不能染成功,不能输出-1,能就按照输入的顺序 ...

  3. LeetCode题解之Number of Segments in a String

    1.题目描述 2.题目分析 找到字符串中的空格即可 3.代码 int countSegments(string s) { ){ ; } vector<string> v; ; i < ...

  4. PAT甲题题解-1104. Sum of Number Segments (20)-(水题)

    #include <iostream> #include <cstdio> #include <algorithm> #include <string.h&g ...

  5. POJ3304:Segments——题解

    http://poj.org/problem?id=3304 题目大意:给n条线段,求是否存在一条直线,将所有线段投影到上面,使得所有投影至少交于一点. ——————————————————————— ...

  6. [CF1167D]Bicolored RBS题解

    模拟两个颜色的扩号层数,贪心,如果是左括号,哪边的层数浅就放那边:如果是右括号,哪边的层数深就放那边. 至于层数的维护,两个int就做掉了 放个代码: #include <cstdio> ...

  7. [CF846C]Four Segments题解

    我们暴力枚举一下\(delim_{1}\) 然后对于每个\(delim_{1}\),O(n)扫一遍+前缀和求出最大\(delim_{0}\)和\(delim_{2}\),然后记录一下它们的位置就行啦 ...

  8. 【题解】CF1426D Non-zero Segments

    题目戳我 \(\text{Solution:}\) 若\([l,r]\)子段和是\(0,\)则\(sum[r]=sum[l-1].\) 于是我们可以考虑维护当前哪一个前缀和出现过.对于区间\([l,r ...

  9. Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树 矩阵面积并

    D. Vika and Segments     Vika has an infinite sheet of squared paper. Initially all squares are whit ...

随机推荐

  1. wait函数与waitpid函数(僵尸进程)

    当子进程退出时,内核会向父进程发送SIGCHLD信号,子进程的退出是个异步事件(子进程可以在父进程运行的任何时刻终止) 子进程退出时,内核将子进程置为僵尸状态,这个进程称为僵尸进程.它只保留最小的一些 ...

  2. POSIX条件变量

    条件变量: 当一个线程互斥的访问某个变量时,它可能发现其他线程改变状态之前,它什么都做不了例如:一个线程访问队列时,发现队列为空,它只能等待,直到其他线程将一个节点添加到队列中,这种情况就需要使用条件 ...

  3. 适用初学者的5种Python数据输入技术

    摘要:数据是数据科学家的基础,因此了解许多加载数据进行分析的方法至关重要.在这里,我们将介绍五种Python数据输入技术,并提供代码示例供您参考. 数据是数据科学家的基础,因此了解许多加载数据进行分析 ...

  4. Linux (操作二)

    1.U盘的装载与卸载(设备都保存在/dev中  /dev存放设备的文件) 1.卸载u盘 umount /media/xxx/xxx  (xxx为具体路径) 2.查看设备 sudo fdisk -l ( ...

  5. putty连接Linux(NAT)

    1.系统装好后第一次连的时候需要打开ssh服务 sudo apt-get install openssh-server 当在机器不能通过ping ip相通的话那么就要解决ip不同的问题,当ip相通还是 ...

  6. centos6安装calamari

    安装操作系统 首先安装操作系统centos6,安装过程选择的是base server,这个不相同不要紧,出现缺少包的时候去iso找出来安装就可以了 calamari的简单介绍 首先简单的介绍下cala ...

  7. 回溯算法 - n 皇后问题

    (1)问题描述 在 n × n 格的棋盘上放置彼此不受攻击的 n 个皇后.按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子.n 后问题等价于在 n × n 的棋盘上放置 n 个 ...

  8. web自动化 模拟鼠标、键盘操作

    一.鼠标操作 1.1鼠标的悬停操作,move_to_element from selenium import webdriver from selenium.webdriver.common.acti ...

  9. 开始使用 java8 的日期工具类

    例如,现有的类(例如java.util.Date和SimpleDateFormatter)不是线程安全的,这会导致用户潜在的并发问题.而新的LocalDate.LocalDateTime.DateTi ...

  10. 学习django笔记一:在urls.py中导入sign应用views文件的问题

    >python-admin startproject guest     #创建guest项目 >python3 manage.py startapp sign  #在guest项目中创建 ...