题面

CF1389F Bicolored Segments

给 \(n\) 条线段 \([l_i,r_i]\),每条有个颜色 \(t_i\in\{0,1\}\),求最多选出多少条线段,使没有不同颜色的线段相交。

数据范围:\(1\le n\le 2\cdot 10^5\),\(1\le l_i\le r_i\le 10^9\)。


蒟蒻语

昨天蒟蒻打 CF,发挥得不错,迷惑回橙。但是蒟蒻没做出这题,赛后想了好久感觉这题很奇妙,于是蒻蒻地来写篇题解。


蒟蒻解一

线段树维护 dp。

先将每条线段 \(l_i,r_i\) 离散化,坐标范围为 \([0,cnt]\)。

设 \(f(i,j,k)\) 表示看了 \([0,i]\),\([j+1,i]\) 的线段颜色都为 \(k\) 的最多线段数。

\[j<i:f(i,j,k)=f(i-1,j,k)+\sum_{x=1}^{n}[l_x>j][r_x=i]
\]
\[f(i,i,k)=\max[\max_{j=0}^{i-1}f(i,j,!k),\max_{j=0}^{i-1}f(i,j,k)]
\]

那么答案是 \(\max_{j=0}^{cnt}f(cnt,j,0/1)\)。

设 \(ca_i\) 这个 vector 存放 \(r_x=i\) 的 \(x\)。

所以可以用一个线段树代替 \(j\) 维,把 \(i\) 维滚掉,实现上述dp。

时间复杂度 \(\Theta(n\log n)\)。

代码

#include <bits/stdc++.h>
using namespace std; //Start
typedef long long ll;
typedef double db;
#define mp(a,b) make_pair(a,b)
#define x first
#define y second
#define be(a) a.begin()
#define en(a) a.end()
#define sz(a) int((a).size())
#define pb(a) push_back(a)
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f; //Data
const int N=2e5,M=(N<<1)+1;
int n,l[N],r[N],t[N],cnt,b[M],ans;
vector<int> ca[M]; //Segmenttree
const int T=M<<2;
#define lk k<<1
#define rk k<<1|1
struct Segmenttree{ //线段树,下标为坐标,维护区间加、全局最大值
int mx[T],mk[T];
void pushup(int k){mx[k]=max(mx[lk],mx[rk]);}
void pm(int k,int v){mk[k]+=v,mx[k]+=v;}
void pushdown(int k){if(mk[k]) pm(lk,mk[k]),pm(rk,mk[k]),mk[k]=0;}
void fix(int x,int y,int v,int k,int l,int r){
if(x<=l&&r<=y) return pm(k,v);
pushdown(k);
int mid=(l+r)>>1;
if(mid>=x) fix(x,y,v,lk,l,mid);
if(mid<y) fix(x,y,v,rk,mid+1,r);
pushup(k);
}
int Mx(){return mx[1];}
void Print(int k,int l,int r){
if(l==r){cout<<mx[k]<<' ';return;}
pushdown(k);
int mid=(l+r)>>1;
Print(lk,l,mid),Print(rk,mid+1,r);
}
}g[2]; //Main
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n;
for(int i=0;i<n;i++){
cin>>l[i]>>r[i]>>t[i],--t[i];
b[cnt++]=l[i],b[cnt++]=r[i];
}
b[cnt++]=0,sort(b,b+cnt),cnt=unique(b,b+cnt)-b;
for(int i=0;i<n;i++){
l[i]=lower_bound(b,b+cnt,l[i])-b;
r[i]=lower_bound(b,b+cnt,r[i])-b;
ca[r[i]].pb(i);
}
for(int i=1;i<cnt;i++){
for(int x:ca[i]) g[t[x]].fix(0,l[x]-1,1,1,0,cnt);
g[0].fix(i,i,g[1].Mx(),1,0,cnt),g[1].fix(i,i,g[0].Mx(),1,0,cnt);//这么写也是可以的
}
cout<<max(g[0].Mx(),g[1].Mx())<<'\n';
return 0;
}

蒟蒻解二

萌新初学 OI 的时候,有一个贪心问题:求最多线段互不相交。做法是右端点再左端点双关键字排序,然后贪心取舍一下。

这题可以同样地骚操作:

初始化答案为 \(n\)。用两个 multiset 记录两种颜色分别选了哪些线段。

顺序枚举排序了的线段,如果没有选了的线段与当前线段异色并重合,那么蒟蒻们可以很开心地选上这条线段。

否则把右端点在当前线段左端点右边并且最近的异色线段从 multiset 中删除,不往 multiset 中加入当前线段,把答案 \(-1\),表示一个对抗抵消的过程。

比如加了一条 \(0\) 线段,然后再加一条 \(1\) 线段与它抵消。这时如果来 \(2\) 条 \(1\) 线段,相当于选了 \(3\) 条 \(1\) 线段;如果来 \(2\) 条 \(0\) 线段,相当于选了 \(3\) 条 \(0\) 线段。

这种思想类似求序列众数时的对抗抵消选举和模拟网络流反悔推流。

时间复杂度 \(\Theta(n\log n)\)。

代码

#include <bits/stdc++.h>
using namespace std; //Start
typedef long long ll;
typedef double db;
#define mp(a,b) make_pair(a,b)
#define x first
#define y second
#define be(a) a.begin()
#define en(a) a.end()
#define sz(a) int((a).size())
#define pb(a) push_back(a)
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f; //Data
const int N=2e5;
int n,ans;
struct S{int l,r,t;}a[N];
multiset<int> g[2]; //Main
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n,ans=n;
for(int i=0;i<n;i++)
cin>>a[i].l>>a[i].r>>a[i].t,--a[i].t;
sort(a,a+n,[&](const S p,const S q){return p.r==q.r?p.l<q.l:p.r<q.r;});
for(int i=0;i<n;i++)
if(g[!a[i].t].lower_bound(a[i].l)==en(g[!a[i].t])) g[a[i].t].insert(a[i].r);
else ans--,g[!a[i].t].erase(g[!a[i].t].lower_bound(a[i].l));
cout<<ans<<'\n';
return 0;
}

祝大家学习愉快!

题解-CF1389F Bicolored Segments的更多相关文章

  1. Codeforces Educational Round 92 赛后解题报告(A-G)

    Codeforces Educational Round 92 赛后解题报告 惨 huayucaiji 惨 A. LCM Problem 赛前:A题嘛,总归简单的咯 赛后:A题这种**题居然想了20m ...

  2. CodeForces 430A Points and Segments (easy)(构造)题解

    题意:之前愣是没看懂题意...就是给你n个点的坐标xi,然后还规定了Li,Ri,要求给每个点染色,每一组L,R内的点红色和黑色的个数不能相差大于1个,问你能不能染成功,不能输出-1,能就按照输入的顺序 ...

  3. LeetCode题解之Number of Segments in a String

    1.题目描述 2.题目分析 找到字符串中的空格即可 3.代码 int countSegments(string s) { ){ ; } vector<string> v; ; i < ...

  4. PAT甲题题解-1104. Sum of Number Segments (20)-(水题)

    #include <iostream> #include <cstdio> #include <algorithm> #include <string.h&g ...

  5. POJ3304:Segments——题解

    http://poj.org/problem?id=3304 题目大意:给n条线段,求是否存在一条直线,将所有线段投影到上面,使得所有投影至少交于一点. ——————————————————————— ...

  6. [CF1167D]Bicolored RBS题解

    模拟两个颜色的扩号层数,贪心,如果是左括号,哪边的层数浅就放那边:如果是右括号,哪边的层数深就放那边. 至于层数的维护,两个int就做掉了 放个代码: #include <cstdio> ...

  7. [CF846C]Four Segments题解

    我们暴力枚举一下\(delim_{1}\) 然后对于每个\(delim_{1}\),O(n)扫一遍+前缀和求出最大\(delim_{0}\)和\(delim_{2}\),然后记录一下它们的位置就行啦 ...

  8. 【题解】CF1426D Non-zero Segments

    题目戳我 \(\text{Solution:}\) 若\([l,r]\)子段和是\(0,\)则\(sum[r]=sum[l-1].\) 于是我们可以考虑维护当前哪一个前缀和出现过.对于区间\([l,r ...

  9. Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树 矩阵面积并

    D. Vika and Segments     Vika has an infinite sheet of squared paper. Initially all squares are whit ...

随机推荐

  1. linux文件的3个时间和7种文件类型

    linux文件的三个时间:  atime: access time --最近访问时间. ctime: change time --最近改变时间. mtime:modify time --最近修改时间. ...

  2. umask及文件默认和原始权限说明

    umask作用:设置了用户创建文件的默认权限.是权限的补码,一般在/etc/profile.$ [HOME]/.bash_profile或$[HOME]/.profile中设置umask值. 查看um ...

  3. 查看ceph集群被哪些客户端连接

    前言 我们在使用集群的时候,一般来说比较关注的是后台的集群的状态,但是在做一些更人性化的管理功能的时候,就需要考虑到更多的细节 本篇就是其中的一个点,查询ceph被哪些客户端连接了 实践 从接口上来说 ...

  4. HTTP请求响应信息字段总结(长期更新)

    http头的Location和Conten-Location HTTP响应细节--常用响应头 HTTP响应中的常用响应头(消息头) Location: 服务器通过这个头,来告诉浏览器跳到哪里 Serv ...

  5. 学好Flex布局并不容易

    1. Flex布局介绍 CSS的传统布局解决方案,基于盒状模型,依赖display属性.position属性.float属性,对于一些特殊的布局,例如垂直居中,往往要想很多hack的方法来解决. 20 ...

  6. 面试官:你说你精通源码,那你知道ArrayList 源码的设计思路吗?

    Arraylist源码分析 ArrayList 我们几乎每天都会使用到,但是通常情况下我们只是知道如何去使用,至于其内部是怎么实现的我们不关心,但是有些时候面试官就喜欢问与ArrayList 的源码相 ...

  7. MathType中余弦函数的输入

    余弦函数是三角函数中十分重要的一个知识点,余弦函数的俩种形式分别为a2=b2+c2-2bccosA和cosA=(b2+c2-a2)/2bc,接下来我们分别介绍一下这俩种形式的输入. 具体步骤如下: 步 ...

  8. O - Matching 题解(状压dp)

    题目链接 题目大意 给你一个方形矩阵mp,边长为n(n<=21) 有n个男生和女生,如果\(mp[i][j]=1\) 代表第i个男生可以和第j个女生配对 问有多少种两两配对的方式,使得所有男生和 ...

  9. C++实现任意进制的相互转换

    进制转换是计算机内部时时刻刻都在进行活动,本篇文章也是进制转换的算法介绍,不过不同的是我想利用ascll编码实现2到61之间任意进制的相互转换,更大进制的表示方法只不过是十六进制表示方法的延伸:用字母 ...

  10. 使用@RequestBody注解获取Ajax提交的json数据

    最近在学习有关springMVC的知识,今天学习如何使用@RequestBody注解来获取Ajax提交的json数据内容. Ajax部分代码如下: 1 $(function(){ 2 $(" ...