HDU 4335 What is N?(指数循环节)题解
题意:
询问有多少数\(n\)满足\(n^{n!}\equiv b\mod p \land\ n\in[1,M]\),数据范围:\(M\leq2^{64}-1,p\leq1e5\)
思路:
这题显然要用欧拉降幂,\(n!\)小于\(\varphi(p)\)的直接暴力算,\(n!\neq 0\mod \varphi(p)\)也直接暴力。
\(n!\equiv 0\mod \varphi(p)\)显然这时质数恒为\(\varphi(p)\),由鸽笼定理得:
当\(x\)是常数时,\(1^x,2^x,\dots,n^x,\dots\mod p\)有循环节为\(\varphi(p)\)
那么直接按循环节搞一下即可。
注意一下,当\(b=0,M=2^{64}-1,p=1\)时,答案爆\(long long\)。
代码:
#include<map>
#include<set>
#include<queue>
#include<cmath>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
const int maxn = 1e5 + 5;
const int MAXM = 3e6;
const ll MOD = 998244353;
const ull seed = 131;
const int INF = 0x3f3f3f3f;
ull euler(ull n){
ull res = n, a = n;
for(int i = 2; i * i <= a; i++){
if(a % i == 0){
res = res / i * (i - 1);
while(a % i == 0) a/= i;
}
}
if(a > 1) res = res / a * (a - 1);
return res;
}
ull ppow(ull a, ull b, ull mod){
ull ret = 1;
while(b){
if(b & 1) ret = ret * a % mod;
a = a * a % mod;
b >>= 1;
}
return ret;
}
ull rec[maxn];
int main(){
int T, ca = 1;
scanf("%d", &T);
while(T--){
ull b, p, m;
scanf("%I64u%I64u%I64u", &b, &p, &m);
if(b == 0 && p == 1){
if(m == 18446744073709551615ULL)
printf("Case #%d: 18446744073709551616\n", ca++);
else
printf("Case #%d: %I64u\n", ca++, m + 1);
continue;
}
ull phi = euler(p);
ull ans = 0, fac = 1;
ull i = 1;
if(b == 0) ans++;
for(i = 1; i <= m; i++){
if(fac * i >= phi) break;
fac = fac * i;
if(ppow(i, fac, p) == b) ans++;
}
for(; i <= m; i++){
if(fac * i % phi == 0) break;
fac = fac * i % phi;
if(ppow(i, fac + phi, p) == b) ans++;
}
if(i <= m){
ull cnt = 0;
for(int j = 1; j <= p; j++){
rec[j] = ppow(j, phi, p);
if(rec[j] == b) cnt++;
}
for(; i <= p && i <= m; i++){
if(rec[i] == b) ans++;
}
if(i <= m){
ull rest = m - p;
ans += rest / p * cnt;
rest -= rest / p * p;
for(i = 1; i <= rest; i++){
if(rec[i] == b) ans++;
}
}
}
printf("Case #%d: %I64u\n", ca++, ans);
}
return 0;
}
HDU 4335 What is N?(指数循环节)题解的更多相关文章
- hdu 2837 Calculation 指数循环节套路题
Calculation Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- HDU 5895 Mathematician QSC(矩阵乘法+循环节降幂+除法取模小技巧+快速幂)
传送门:HDU 5895 Mathematician QSC 这是一篇很好的题解,我想讲的他基本都讲了http://blog.csdn.net/queuelovestack/article/detai ...
- HDU 2814 斐波那契循环节 欧拉降幂
一看就是欧拉降幂,问题是怎么求$fib(a^b)$,C给的那么小显然还是要找循环节.数据范围出的很那啥..unsigned long long注意用防爆的乘法 /** @Date : 2017-09- ...
- HDU 3746 Cyclic Nacklace (KMP求循环节问题)
<题目链接> 题目大意: 给你一个字符串,要求将字符串的全部字符最少循环2次需要添加的字符数. [>>>kmp next函数 kmp的周期问题] #include &l ...
- HDU 1358 Period(KMP+最小循环节)题解
思路: 这里只要注意一点,就是失配值和前后缀匹配值的区别,不懂的可以看看这里,这题因为对子串也要判定,所以用前后缀匹配值,其他的按照最小循环节做 代码: #include<iostream> ...
- hdu 5895 Mathematician QSC 指数循环节+矩阵快速幂
Mathematician QSC Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Othe ...
- 指数循环节 求A的B次方模C
phi(c)为欧拉函数, 欧拉定理 : 对于互质的正整数 a 和 n ,有 aφ(n) ≡ 1 mod n . A^x = A^(x % Phi(C) + Phi(C)) (mod C) (x & ...
- 指数循环节&欧拉降幂
证明:https://www.cnblogs.com/maijing/p/5046628.html 注意使用条件(B的范围) 例题: FZU1759 HDU2837 ZOJ1674 HDU4335
- HDU2837 Calculation(指数循环节)题解
题意: 已知\(f(0)=1,f(n)=(n\%10)^{f(n/10)}\),求\(f(n)\mod m\) 思路: 由扩展欧拉定理可知:当\(b>=m\)时,\(a^b\equiv a^{b ...
随机推荐
- RocketMQ在linx安装及其有关问题解决
Linx安装和使用: rocketmq官网:http://rocketmq.apache.org/ 首先安装JDK(推荐使用JDK1.8),并配置环境变量 下载rocketmq压碎包并解压到指定目录 ...
- 1V升压到3V的芯片,1V升压3.3V电路图
1V升压到3V和1V升压3.3V的升压芯片? PW5100 是一款效率很大.低功耗.低纹波.高工作频率的 PFM 同步升压 DC/DC 变换器.输出电压可选固定输出值,从 3.0V,3.3V, 5.0 ...
- (13)-Python3之--获取当前时间
1.导入datetime模块 import datetime 2.获取当前日期和时间 import datetime now_time = datetime.datetime.now() print( ...
- jQuery 页面滚动 吸顶 和 吸底
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- 当中台遇上DDD,我们该如何设计微服务? - InfoQ https://www.infoq.cn/article/7QgXyp4Jh3-5Pk6LydWw
当中台遇上DDD,我们该如何设计微服务? - InfoQ https://www.infoq.cn/article/7QgXyp4Jh3-5Pk6LydWw
- 正向代理 forward proxy、反向代理 reverse proxy、透明代理 transparent proxy
https://zh.wikipedia.org/wiki/反向代理 反向代理在计算机网络中是代理服务器的一种.服务器根据客户端的请求,从其关系的一组或多组后端服务器(如Web服务器)上获取资源,然后 ...
- 排查golang的性能问题 go pprof 实践
小结: 1.内存消耗分析 list peek 定位到函数 https://mp.weixin.qq.com/s/_LovnIqJYAuDpTm2QmUgrA 使用pprof和go-torch排查 ...
- ReentrantReadWriteLock读写锁简单原理案例证明
ReentrantReadWriteLock存在原因? 我们知道List的实现类ArrayList,LinkedList都是非线程安全的,Vector类通过用synchronized修饰方法保证了Li ...
- WireGuard 教程:使用 DNS-SD 进行 NAT-to-NAT 穿透
原文链接:https://fuckcloudnative.io/posts/wireguard-endpoint-discovery-nat-traversal/ WireGuard 是由 Jason ...
- [一天一个进阶系列] - MyBatis基础篇
前言:一直以来,很多人都是拿来主义,只停留在会使用的阶段,从未去研究挖掘其原理,剖析本质.现在慢慢探讨一下其内幕,抛砖引玉 一.简介 1)常用的持久化框架 Hibernate:是一款Java世界中最著 ...