HDU 4335 What is N?(指数循环节)题解
题意:
询问有多少数\(n\)满足\(n^{n!}\equiv b\mod p \land\ n\in[1,M]\),数据范围:\(M\leq2^{64}-1,p\leq1e5\)
思路:
这题显然要用欧拉降幂,\(n!\)小于\(\varphi(p)\)的直接暴力算,\(n!\neq 0\mod \varphi(p)\)也直接暴力。
\(n!\equiv 0\mod \varphi(p)\)显然这时质数恒为\(\varphi(p)\),由鸽笼定理得:
当\(x\)是常数时,\(1^x,2^x,\dots,n^x,\dots\mod p\)有循环节为\(\varphi(p)\)
那么直接按循环节搞一下即可。
注意一下,当\(b=0,M=2^{64}-1,p=1\)时,答案爆\(long long\)。
代码:
#include<map>
#include<set>
#include<queue>
#include<cmath>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
const int maxn = 1e5 + 5;
const int MAXM = 3e6;
const ll MOD = 998244353;
const ull seed = 131;
const int INF = 0x3f3f3f3f;
ull euler(ull n){
ull res = n, a = n;
for(int i = 2; i * i <= a; i++){
if(a % i == 0){
res = res / i * (i - 1);
while(a % i == 0) a/= i;
}
}
if(a > 1) res = res / a * (a - 1);
return res;
}
ull ppow(ull a, ull b, ull mod){
ull ret = 1;
while(b){
if(b & 1) ret = ret * a % mod;
a = a * a % mod;
b >>= 1;
}
return ret;
}
ull rec[maxn];
int main(){
int T, ca = 1;
scanf("%d", &T);
while(T--){
ull b, p, m;
scanf("%I64u%I64u%I64u", &b, &p, &m);
if(b == 0 && p == 1){
if(m == 18446744073709551615ULL)
printf("Case #%d: 18446744073709551616\n", ca++);
else
printf("Case #%d: %I64u\n", ca++, m + 1);
continue;
}
ull phi = euler(p);
ull ans = 0, fac = 1;
ull i = 1;
if(b == 0) ans++;
for(i = 1; i <= m; i++){
if(fac * i >= phi) break;
fac = fac * i;
if(ppow(i, fac, p) == b) ans++;
}
for(; i <= m; i++){
if(fac * i % phi == 0) break;
fac = fac * i % phi;
if(ppow(i, fac + phi, p) == b) ans++;
}
if(i <= m){
ull cnt = 0;
for(int j = 1; j <= p; j++){
rec[j] = ppow(j, phi, p);
if(rec[j] == b) cnt++;
}
for(; i <= p && i <= m; i++){
if(rec[i] == b) ans++;
}
if(i <= m){
ull rest = m - p;
ans += rest / p * cnt;
rest -= rest / p * p;
for(i = 1; i <= rest; i++){
if(rec[i] == b) ans++;
}
}
}
printf("Case #%d: %I64u\n", ca++, ans);
}
return 0;
}
HDU 4335 What is N?(指数循环节)题解的更多相关文章
- hdu 2837 Calculation 指数循环节套路题
Calculation Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- HDU 5895 Mathematician QSC(矩阵乘法+循环节降幂+除法取模小技巧+快速幂)
传送门:HDU 5895 Mathematician QSC 这是一篇很好的题解,我想讲的他基本都讲了http://blog.csdn.net/queuelovestack/article/detai ...
- HDU 2814 斐波那契循环节 欧拉降幂
一看就是欧拉降幂,问题是怎么求$fib(a^b)$,C给的那么小显然还是要找循环节.数据范围出的很那啥..unsigned long long注意用防爆的乘法 /** @Date : 2017-09- ...
- HDU 3746 Cyclic Nacklace (KMP求循环节问题)
<题目链接> 题目大意: 给你一个字符串,要求将字符串的全部字符最少循环2次需要添加的字符数. [>>>kmp next函数 kmp的周期问题] #include &l ...
- HDU 1358 Period(KMP+最小循环节)题解
思路: 这里只要注意一点,就是失配值和前后缀匹配值的区别,不懂的可以看看这里,这题因为对子串也要判定,所以用前后缀匹配值,其他的按照最小循环节做 代码: #include<iostream> ...
- hdu 5895 Mathematician QSC 指数循环节+矩阵快速幂
Mathematician QSC Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Othe ...
- 指数循环节 求A的B次方模C
phi(c)为欧拉函数, 欧拉定理 : 对于互质的正整数 a 和 n ,有 aφ(n) ≡ 1 mod n . A^x = A^(x % Phi(C) + Phi(C)) (mod C) (x & ...
- 指数循环节&欧拉降幂
证明:https://www.cnblogs.com/maijing/p/5046628.html 注意使用条件(B的范围) 例题: FZU1759 HDU2837 ZOJ1674 HDU4335
- HDU2837 Calculation(指数循环节)题解
题意: 已知\(f(0)=1,f(n)=(n\%10)^{f(n/10)}\),求\(f(n)\mod m\) 思路: 由扩展欧拉定理可知:当\(b>=m\)时,\(a^b\equiv a^{b ...
随机推荐
- 1.搭建Hadoop实验平台
节点功能规划 操作系统:CentOS7.2(1511) Java JDK版本:jdk-8u65-linux-x64.tar.gz Hadoop版本:hadoop-2.8.3.tar.gz 下载地址: ...
- SparkStreaming和Kafka基于Direct Approach如何管理offset实现exactly once
在之前的文章<解析SparkStreaming和Kafka集成的两种方式>中已详细介绍SparkStreaming和Kafka集成主要有Receiver based Approach和Di ...
- 5V 升压 8.4V,5V 转 8.4V 做两节锂电池充电芯片
5V 升压 8.4V SOT23-6 封装的六脚升压 IC PW5300 是一颗 DC-DC 异步整流升压转换器芯片,输入电压范围 2.6V-5.5V.最高输出 电压 12V, PW5300 是一种电 ...
- python中json模块的使用
Python自带json模块,它有loads.dumps.load和dump这4个功能,用于Json格式字符串和Python数据类型间进行转换. 一.json.loads() 把Json格式字符串解码 ...
- Android事件分发机制五:面试官你坐啊
前言 很高兴遇见你~ 事件分发系列文章已经到最后一篇了,先来回顾一下前面四篇,也当个目录: Android事件分发机制一:事件是如何到达activity的? : 从window机制出发分析了事件分发的 ...
- 解析MySQL中存储时间日期类型的选择问题
解析MySQL中存储时间日期类型的选择问题_Mysql_脚本之家 https://www.jb51.net/article/125715.htm 一般应用中,我们用timestamp,datetime ...
- 请不要继续将数据库称为 CP 或 AP - 掘金 https://juejin.im/post/6844903878102614030
请不要继续将数据库称为 CP 或 AP - 掘金 https://juejin.im/post/6844903878102614030
- LeetCode上并发题目无Go版本:台湾同胞试水 — 交替打印FooBar
https://mp.weixin.qq.com/s/I5va3PI1oGIj8R_n3Nw2yw
- http发送
package cn.com.yitong.wdph.util; import java.io.BufferedReader;import java.io.InputStream;import jav ...
- Java AQS的原理
首先可以看: http://ifeve.com/java-special-troops-aqs/ 再看 <Java并发编程的艺术>第5章 核心:同步器的acquire方法: 首先调用自 ...