codeforces 1010 C. Border【exgcd】
题目链接:戳这里
学习博客:戳这里
题意:给n种数,n种数取任意个任意组合相加为sum,求sum%k有哪些值。
解题思路:
由exgcd可知(具体用到的是贝祖定理),ax + by = c,满足gcd(x,y)|c。那么我们可以设sum=a1*x1+a2*x2+a3*x3...an*xn,即sum%k=a1*x2+a2*x2+a3*x3...+an*xn-ak*xk=a1*x1+a2*x2+a3*x3+...+an*xn+ak*xk,满足gcd(x1,x2...xn,xk)|(sum%k)。
因此遍历0~k-1与gcd相乘即为答案。
附大佬代码:
1 #include<bits/stdc++.h>
2
3 using namespace std;
4
5 int gcd(int a,int b)
6 {
7 if(a<b)
8 swap(a,b);
9 return (b==0)?a:gcd(b,a%b);
10 }
11
12 int main()
13 {
14 int n,k;
15 scanf("%d%d",&n,&k);
16 int g=0;
17 for(int i=0;i<n;i++)
18 {
19 int t;
20 scanf("%d",&t);
21 g=gcd(g,t);
22 }
23 set<int> ans;
24 for(long long i=0,s=0;i<k;i++,s+=g)
25 ans.insert(s%k);
26 printf("%d\n",ans.size());
27 for(set<int>::iterator i=ans.begin();i!=ans.end();i++)
28 printf("%d ",*i);
29 }
codeforces 1010 C. Border【exgcd】的更多相关文章
- [CodeForces - 1225D]Power Products 【数论】 【分解质因数】
		[CodeForces - 1225D]Power Products [数论] [分解质因数] 标签:题解 codeforces题解 数论 题目描述 Time limit 2000 ms Memory ... 
- Codeforces 716A Crazy Computer 【模拟】 (Codeforces Round #372 (Div. 2))
		A. Crazy Computer time limit per test 2 seconds memory limit per test 256 megabytes input standard i ... 
- 【exgcd】卡片
		卡片 题目描述 你有一叠标号为1到n的卡片.你有一种操作,可以重排列这些卡片,操作如下:1.将卡片分为前半部分和后半部分.2.依次从后半部分,前半部分中各取一张卡片,放到新的序列中.例如,对卡片序列( ... 
- Codeforces 1027E  Inverse Coloring 【DP】
		Codeforces 1027E Inverse Coloring 题目链接 #include<bits/stdc++.h> using namespace std; #define N ... 
- Codeforces1106F 【BSGS】【矩阵快速幂】【exgcd】
		首先矩阵快速幂可以算出来第k项的指数,然后可以利用原根的性质,用bsgs和exgcd把答案解出来 #include<bits/stdc++.h> using namespace std; ... 
- 洛谷 P4774 / loj 2721 [NOI2018] 屠龙勇士 题解【同余】【exgcd】【CRT】
		推导过程存在漏洞+exCRT板子没打熟于是期望得分÷实际得分=∞? 题目描述 小 D 最近在网上发现了一款小游戏.游戏的规则如下: 游戏的目标是按照编号 \(1\sim n\) 顺序杀掉 \(n\ ... 
- 【9.2校内测试】【开学祭】【exgcd】【树规(背包】【模拟】
		比较裸的$exgcd$的应用? $exgcd$可以算出在$x$和$y$分别是最小正整数时的解.注意在这里因为有$a(x+\frac{b}{d})+b(y-\frac{a}{d})=c$,$d=gcd( ... 
- Codeforces Round #371 & HihoCoder1529【玄学】
		时间限制:40000ms 单点时限:2000ms 内存限制:256MB 描述 给定一个长度为 n 的非负整数序列 a[1..n]. 你每次可以花费 1 的代价给某个 a[i] 加1或者减1. 求最少需 ... 
- BZOJ1407 NOI2002 Savage 【Exgcd】
		BZOJ1407 NOI2002 Savage Description Input 第1行为一个整数N(1<=N<=15),即野人的数目. 第2行到第N+1每行为三个整数Ci, Pi, L ... 
随机推荐
- 史上最全postgreSQL体系结构(转)
			原文链接:https://cloud.tencent.com/developer/article/1469101 墨墨导读:本文主要从日志文件.参数文件.控制文件.数据文件.redo日志(WAL).后 ... 
- 1、kubernetes简介
			Kubernetes简介 文档信息 中文官网:https://kubernetes.io/zh 中文社区:https://www.kubernetes.org.cn/ Kubernetes是容器集群管 ... 
- uni-app开发经验分享十六:发布android版App的详细过程
			开发环境 1. Android Studio下载地址:Android Studio官网 OR Android Studio中文社区 2. HBuilderX(开发工具) 3. App离线SDK下载:最 ... 
- CSS响应式布局学习笔记(多种方法解决响应式问题)
			在做web开发的工作中,会遇到需要我给页面根据设计的要求,进行响应式布局,这里跟大家分享下我对于响应式布局的解决方法: 我主要利用的是CSS3 媒体查询,即media queries,可以针对不同的媒 ... 
- 相对论中的光速c不变,这么讲!你总能理解了吧!
			今天谈谈相对论的假设基础--光速不变,很多人都知道爱因斯坦的相对论,也知道相对论的理论基础是光速不变,即无论参考哪个参照系,光的速度都是不变的,这个很难得理解的问题.我之前看过别人的理解,也自己思考怎 ... 
- .net core 和 WPF 开发升讯威在线客服与营销系统:使用 TCP协议 实现稳定的客服端
			本系列文章详细介绍使用 .net core 和 WPF 开发 升讯威在线客服与营销系统 的过程.本产品已经成熟稳定并投入商用. 在线演示环境:https://kf.shengxunwei.com 注意 ... 
- Building a high performance JSON parser
			Building a high performance JSON parser https://dave.cheney.net/high-performance-json.html 
- What is the difference between Serialization and Marshaling?
			How to serialize and deserialize JSON using C# - .NET | Microsoft Docs https://docs.microsoft.com/en ... 
- Autofac for AutoMapper
			我一直在做的事情.NET 开发已经有一段时间了.有时人们问我,为什么我仍然觉得它有趣.答案很简单: 我是超级 d.r.y.如果你不熟悉这个术语,你应该查一下,但它基本上意味着你应该总是尝试应用那些可以 ... 
- copy,集合
			一.基础数据类型补充: 1种方法:删除列表里面的元素时,一定不能循环列表,会出错.可以循环索引,然后循环删除开头或结尾这个位置的元素(原开头结尾的元素被删除之后,会有新的元素顶上来). 2种方法:把要 ... 
