源自知乎的一个答案,网上很多关于PCA的文章,不过很多都只讲到了如何理解方差的投影,却很少有讲到为什么特征向量就是投影方向。本文从形象角度谈一谈,因为没有证明,所以不会严谨,但是应该能够帮助形象理解PCA背后的原理。

一、先从旋转和缩放角度,理解一下特征向量和特征值的几何意义

从定义来理解特征向量的话,就是经过一个矩阵变换后,空间沿着特征向量的方向上相当于只发生了缩放,比如我们考虑下面的矩阵:

\[
\begin{bmatrix}
1.5 & 0.5\\
0.5 & 1.0
\end{bmatrix}
\]

求这个变换的特征向量和特征值,分别是:\(U=\begin{bmatrix} 0.85 & -0.53\\ 0.53 & 0.85 \end{bmatrix}\)(列向量)和1.81,0.69

用一个形象的例子来说明一下几何意义,我们考虑下面笑脸图案:

为方便演示笑脸图案在0,0和1,1围起来的单位正方形里,同时也用两个箭头标出来了特征向量的方向。经过\(\begin{bmatrix} 1.5 & 0.5\\ 0.5 & 1.0 \end{bmatrix}\)变换,也就是用这个图案中的每个点的坐标和这个矩阵做乘法,得到下面图案:

可以看到就是沿着两个正交的,特征向量的方向进行了缩放,这就是特征向量的一般的几何理解。

这个理解虽然清晰,但是并没有特别形象。我们也可以分解一下,从旋转和沿轴缩放的角度理解,分成三步:

第一步,把特征向量所指的方向分别转到横轴和纵轴这一步相当于用U的转置,也就是\(U^{T}\)进行了变换

第二步,然后把特征值作为缩放倍数,构造一个缩放矩阵\(\begin{bmatrix} 1.81 & 0\\ 0 & 0.69 \end{bmatrix}\),矩阵分别沿着横轴和纵轴进行缩放:

第三步,很自然地,接下来只要把这个图案转回去,也就是直接乘U就可以了

所以,从旋转和缩放的角度,一个矩阵变换就是,旋转-->沿坐标轴缩放-->转回来,的三步操作,表达如下:

\[T=U \Sigma U ^{T}\]

多提一句,这里给的是个(半)正定矩阵的例子,对于不镇定的矩阵,也是可以分解为,旋转-->沿坐标轴缩放-->旋转,的三步的,只不过最后一步和第一步的两个旋转不是转回去的关系了,表达如下:

\[T=U \Sigma V^{T}\]

这个就是SVD分解,就不详细说了。另外,这个例子是二维的,高维类似,但是形象理解需要脑补。

二、协方差矩阵的特征向量PCA的意义

一句话概括PCA的话就是找到方差在该方向上投影最大的那些方向,比如下边这个图是用\(\begin{bmatrix} 1 & 0.5\\ 0.5 & 1 \end{bmatrix}\)作为些协方差矩阵产生的高斯分布样本:

大致用个椭圆圈出来分布,相关性最强的(0.707,0.707)方向就是投影之后方差最大的方向。接下来我们不尝试严格证明,而是从旋转和缩放的角度形象理解一下,我们可以考虑把这个分布也旋转一下,让长轴在x轴上,短轴在y轴上,变成如下:

然后再沿着x轴和y轴,除以标准差,缩放成标准差为1的单位分布:

注意,在这个除以标准差的过程中,标准差最大的轴,就对应着原空间中,样本投影后方差最大的方向。接下来,假设这个分布中的样本为\(X_U\),则我们可以把一开始的样本表示为:

\[X=ULX_U\]

用这么别扭的表示方式主要是为了接下来推公式方便,所以接下来推个简单的公式:

协方差矩阵,用S表示,则有

\[S_{ij}=E\left[ (X_i-\mu _i)(X_j-\mu _j) \right]\]

因为这个分布里两个维度的均值都是0,所以有

\[S_{ij}=E\left[ X_iX_j \right]\]

所以

\[S=\frac{1}{N} XX^T\]

其中N是样本数,根据前面的\(X=ULX_U\),进一步展开这个公式:

\[S=\frac{1}{N} XX^T=\frac{1}{N}(ULX_U)(ULX_U)^T=UL(\frac{1}{N}X_U{X_U}^T)L^TU^T\]

因为\(X_U\)是个单位方差的且无相关性的样本,所以

\[\frac{1}{N}X_U{X_U}^T=I\]

另外L是个对角矩阵所以有

\[S=ULL^TU^T=UL^2U^T=U\Sigma U^T\]

这个公式上一部分已经说过了。所以对角线上的元素对应的就是方差的大小,而缩放倍数就是标准差的大小,也就是特征值的开根号,而U就是要沿着缩放的方向,也就是问题中投影的方向,正是特征向量。

主成分分析(PCA)的一种直观理解的更多相关文章

  1. 主成分分析PCA数据降维原理及python应用(葡萄酒案例分析)

    目录 主成分分析(PCA)——以葡萄酒数据集分类为例 1.认识PCA (1)简介 (2)方法步骤 2.提取主成分 3.主成分方差可视化 4.特征变换 5.数据分类结果 6.完整代码 总结: 1.认识P ...

  2. 运用sklearn进行主成分分析(PCA)代码实现

    基于sklearn的主成分分析代码实现 一.前言及回顾 二.sklearn的PCA类介绍 三.分类结果区域可视化函数 四.10行代码完成葡萄酒数据集分类 五.完整代码 六.总结 基于sklearn的主 ...

  3. SciKit-Learn 可视化数据:主成分分析(PCA)

    ## 保留版权所有,转帖注明出处 章节 SciKit-Learn 加载数据集 SciKit-Learn 数据集基本信息 SciKit-Learn 使用matplotlib可视化数据 SciKit-Le ...

  4. 线性判别分析(LDA), 主成分分析(PCA)及其推导【转】

    前言: 如果学习分类算法,最好从线性的入手,线性分类器最简单的就是LDA,它可以看做是简化版的SVM,如果想理解SVM这种分类器,那理解LDA就是很有必要的了. 谈到LDA,就不得不谈谈PCA,PCA ...

  5. 机器学习中的数学-线性判别分析(LDA), 主成分分析(PCA)

    转:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/08/lda-and-pca-machine-learning.html 版权声明: 本文由L ...

  6. 机器学习中的数学(4)-线性判别分析(LDA), 主成分分析(PCA)

    版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...

  7. 机器学习 —— 基础整理(四)特征提取之线性方法:主成分分析PCA、独立成分分析ICA、线性判别分析LDA

    本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensiona ...

  8. 主成分分析(PCA)原理及推导

    原文:http://blog.csdn.net/zhongkejingwang/article/details/42264479 什么是PCA? 在数据挖掘或者图像处理等领域经常会用到主成分分析,这样 ...

  9. 主成分分析(PCA)

    相对与网上很多人分享的有关PCA的经历,我第一次接触PCA却不是从人脸表情识别开始的,但我所在的实验室方向之一是人脸的研究,最后也会回到这个方向上来吧. PCA(principal component ...

随机推荐

  1. 解剖SQLSERVER 第五篇 OrcaMDF里读取Bits类型数据(译)

    解剖SQLSERVER 第五篇  OrcaMDF里读取Bits类型数据(译) http://improve.dk/reading-bits-in-orcamdf/ Bits类型的存储跟SQLSERVE ...

  2. VS2012下配置MPI

    并行处理结课实验,要用到MPI编程,我的电脑和VS2012都是64位的,以为MPICH也得是64位才行,结果饶了很大的弯——配置正确,添加引用之后,仍然无法识别MPI函数. 后来换了个32位的MPIC ...

  3. 全面理解Javascript闭包和闭包的几种写法及用途

    好久没有写博客了,过了一个十一长假都变懒了,今天总算是恢复状态了.好了,进入正题,今天来说一说javascript里面的闭包吧!本篇博客主要讲一些实用的东西,主要将闭包的写法.用法和用途.  一.什么 ...

  4. 使用Location对象查询字符串参数

    location是BOM中最有用的对象之一: 1.它提供了与当前窗口中加载的文档有关的信息: 2.他还提供了一些导航功能. location对象的属性有: hash, host, hostname, ...

  5. 【译】用jQuery 处理XML-- jQuery与XML

    用jQuery 处理XML--写在前面的话 用jQuery 处理XML-- DOM(文本对象模型)简介 用jQuery 处理XML--浏览器中的XML与JavaScript 用jQuery 处理XML ...

  6. 网络异步编程(C#)团购课

    新生命开发团队大石头讲解网络异步编程(C#) 内容:网络编程基础.IOCP.APM.SAEA 时长:2~3小时 价格:20元,20人及以上成团,http://item.taobao.com/item. ...

  7. 我心中的核心组件(可插拔的AOP)~分布式文件上传组件~基于FastDFS

    回到目录 一些概念 在大叔框架里总觉得缺点什么,在最近的项目开发中,终于知道缺什么了,分布式文件存储组件,就是缺它,呵呵,对于分布式文件存储来说,业界比较公认的是FastDFS组件,它自己本身就是集群 ...

  8. WebApi系列~按需序列化字段~Hot

    回到目录 起初只是一个想法,一次讨论,一个设想,但相信一定可以实现,具体的事情是这样的,有个对外的API项目,它为一些终端设备提供数据,如手机,平板,PC,当然你也可以说它为很多平台提供数据win32 ...

  9. 04- Shell脚本学习--条件控制和循环语句

    条件判断:if语句 语法格式: if [ expression ] then Statement(s) to be executed if expression is true fi 注意:expre ...

  10. paip.禁用IKAnalyzer 的默认词库.仅仅使用自定义词库.

    paip.禁用IKAnalyzer 的默认词库.仅仅使用自定义词库. 作者Attilax  艾龙,  EMAIL:1466519819@qq.com  来源:attilax的专栏 地址:http:// ...