B1018. 锤子剪刀布 (20)

Discription:

大家应该都会玩“锤子剪刀布”的游戏:两人同时给出手势,胜负规则如图所示:

现给出两人的交锋记录,请统计双方的胜、平、负次数,并且给出双方分别出什么手势的胜算最大。

Input:

输入第1行给出正整数N(<=105),即双方交锋的次数。随后N行,每行给出一次交锋的信息,即甲、乙双方同时给出的的手势。C代表“锤子”、J代表“剪刀”、B代表“布”,第1个字母代表甲方,第2个代表乙方,中间有1个空格。

Output:

输出第1、2行分别给出甲、乙的胜、平、负次数,数字间以1个空格分隔。第3行给出两个字母,分别代表甲、乙获胜次数最多的手势,中间有1个空格。如果解不唯一,则输出按字母序最小的解。

Sample Input:

10
C J
J B
C B
B B
B C
C C
C B
J B
B C
J J

Sample Output:

5 3 2
2 3 5
B B

 #include <cstdio>

 #define MaxSize 3

 int ListA[MaxSize], ListB[MaxSize], Time[MaxSize];

 int main()
{
//freopen("E:\\Temp\\input.txt", "r", stdin); int N;
char c1, c2;
scanf("%d", &N);
for(int i=; i<N; i++) {
getchar();
scanf("%c %c", &c1, &c2);
if(c1 == 'B') {
if(c2 == 'B') {
Time[]++;
} else if(c2 == 'C') {
Time[]++;
ListA[]++;
} else {
Time[]++;
ListB[]++;
}
} else if(c1 == 'C') {
if(c2 == 'B') {
Time[]++;
ListB[]++;
} else if(c2 == 'C') {
Time[]++;
} else {
Time[]++;
ListA[]++;
}
} else {
if(c2 == 'B') {
Time[]++;
ListA[]++;
} else if(c2 == 'C') {
Time[]++;
ListB[]++;
} else {
Time[]++;
}
}
} printf("%d %d %d\n%d %d %d\n", Time[], Time[], Time[], Time[], Time[], Time[]);
if(ListA[] >= ListA[]) {
if(ListA[] >= ListA[])
printf("B ");
else
printf("J ");
} else {
if(ListA[] >= ListA[])
printf("C ");
else
printf("J ");
}
if(ListB[] >= ListB[]) {
if(ListB[] >= ListB[])
printf("B\n");
else
printf("J\n");
} else {
if(ListB[] >= ListB[])
printf("C\n");
else
printf("J\n");
} return ;
}
 #include <cstdio>

 int change(char c)
{
if(c == 'B')
return ;
else if(c == 'C')
return ;
else
return ;
} int main()
{
//freopen("E:\\Temp\\input.txt", "r", stdin); char mp[] = {'B', 'C', 'J'};
int n;
scanf("%d", &n);
int times_A[] = {}, times_B[] = {};
int hand_A[] = {}, hand_B[] = {};
char c1, c2;
int k1, k2;
for(int i=; i<n; i++) {
getchar();
scanf("%c %c", &c1, &c2);
k1 = change(c1);
k2 = change(c2);
if((k1+)% == k2) {
times_A[]++;
times_B[]++;
hand_A[k1]++;
} else if(k1 == k2) {
times_A[]++;
times_B[]++;
} else {
times_A[]++;
times_B[]++;
hand_B[k2]++;
}
} printf("%d %d %d\n", times_A[], times_A[], times_A[]);
printf("%d %d %d\n", times_B[], times_B[], times_B[]);
int id1 = , id2 = ;
for(int i=; i<; i++) {
if(hand_A[i] > hand_A[id1])
id1 = i;
if(hand_B[i] > hand_B[id2])
id2 = i;
}
printf("%c %c\n", mp[id1], mp[id2]); return ;
}

A1042. Shuffling Machine (20)

Description:

Shuffling is a procedure used to randomize a deck of playing cards. Because standard shuffling techniques are seen as weak, and in order to avoid "inside jobs" where employees collaborate with gamblers by performing inadequate shuffles, many casinos employ automatic shuffling machines. Your task is to simulate a shuffling machine.

The machine shuffles a deck of 54 cards according to a given random order and repeats for a given number of times. It is assumed that the initial status of a card deck is in the following order:

S1, S2, ..., S13, H1, H2, ..., H13, C1, C2, ..., C13, D1, D2, ..., D13, J1, J2

where "S" stands for "Spade", "H" for "Heart", "C" for "Club", "D" for "Diamond", and "J" for "Joker". A given order is a permutation of distinct integers in [1, 54]. If the number at the i-th position is j, it means to move the card from position i to position j. For example, suppose we only have 5 cards: S3, H5, C1, D13 and J2. Given a shuffling order {4, 2, 5, 3, 1}, the result will be: J2, H5, D13, S3, C1. If we are to repeat the shuffling again, the result will be: C1, H5, S3, J2, D13.

Input:

Each input file contains one test case. For each case, the first line contains a positive integer K (<= 20) which is the number of repeat times. Then the next line contains the given order. All the numbers in a line are separated by a space.

Output:

For each test case, print the shuffling results in one line. All the cards are separated by a space, and there must be no extra space at the end of the line.

Sample Input:

2
36 52 37 38 3 39 40 53 54 41 11 12 13 42 43 44 2 4 23 24 25 26 27 6 7 8 48 49 50 51 9 10 14 15 16 5 17 18 19 1 20 21 22 28 29 30 31 32 33 34 35 45 46 47

Sample Output:

S7 C11 C10 C12 S1 H7 H8 H9 D8 D9 S11 S12 S13 D10 D11 D12 S3 S4 S6 S10 H1 H2 C13 D2 D3 D4 H6 H3 D13 J1 J2 C1 C2 C3 C4 D1 S5 H5 H11 H12 C6 C7 C8 C9 S2 S8 S9 H10 D5 D6 D7 H4 H13 C5

 #include <cstdio>

 #define MaxSize 55

 int List1[MaxSize], List2[MaxSize], List3[MaxSize];

 int main()
{
//freopen("E:\\Temp\\input.txt", "r", stdin); int N, temp;
scanf("%d", &N);
for(int i=; i<MaxSize; i++) {
List1[i] = i;
scanf("%d", &List2[i]);
}
for(int i=; i<N; i++) {
for(int j=; j<MaxSize; j++) {
List3[List2[j]] = List1[j];
}
for(int k=; k<MaxSize; k++) {
List1[k] = List3[k];
}
} for(int i=; i<MaxSize-; i++) {
if(List1[i] > ) {
printf("J%d ", List1[i]-);
} else if(List1[i] > ) {
printf("D%d ", List1[i]-);
} else if(List1[i] > ) {
printf("C%d ", List1[i]-);
} else if(List1[i] > ) {
printf("H%d ", List1[i]-);
} else {
printf("S%d ", List1[i]);
}
}
if(List1[MaxSize-] > ) {
printf("J%d\n", List1[MaxSize-]-);
} else if(List1[MaxSize-] > ) {
printf("D%d\n", List1[MaxSize-]-);
} else if(List1[MaxSize-] > ) {
printf("C%d\n", List1[MaxSize-]-);
} else if(List1[MaxSize-] > ) {
printf("H%d\n", List1[MaxSize-]-);
} else {
printf("S%d\n", List1[MaxSize-]);
} return ;
}
 #include <cstdio>

 const int N = ;
char mp[] = {'S', 'H', 'C', 'D', 'J'};
int start[N], end[N], next[N]; int main()
{
//freopen("E:\\Temp\\input.txt", "r", stdin); int K;
scanf("%d", &K);
for(int i=; i<=N; i++)
start[i] = i;
for(int i=; i<=N; i++)
scanf("%d", &next[i]); for(int step = ; step < K; step++) {
for(int i=; i<=N; i++)
end[next[i]] = start[i];
for(int i=; i<=N; i++)
start[i] = end[i];
} for(int i=; i<=N; i++) {
if(i != )
printf(" ");
start[i]--;
printf("%c%d", mp[start[i]/], start[i]%+);
} return ;
}

A1046.Shortest Distance (20)

Description:

The task is really simple: given N exits on a highway which forms a simple cycle, you are supposed to tell the shortest distance between any pair of exits.

Input:

Each input file contains one test case. For each case, the first line contains an integer N (in [3, 105]), followed by N integer distances D1 D2 ... DN, where Di is the distance between the i-th and the (i+1)-st exits, and DN is between the N-th and the 1st exits. All the numbers in a line are separated by a space. The second line gives a positive integer M (<=104), with M lines follow, each contains a pair of exit numbers, provided that the exits are numbered from 1 to N. It is guaranteed that the total round trip distance is no more than 107.

Output:

For each test case, print your results in M lines, each contains the shortest distance between the corresponding given pair of exits.

Sample Input:

5 1 2 4 14 9
3
1 3
2 5
4 1

Sample Output:

3

10

7

 #include <cstdio>
#include <algorithm>
using namespace std; const int MAXN = ;
int dis[MAXN], A[MAXN]; int main()
{
int sum = , query, n, left, right;
scanf("%d", &n);
for(int i=; i<=n; i++) {
scanf("%d", &A[i]);
sum += A[i];
dis[i] = sum;
}
scanf("%d", &query);
for(int i=; i<query; i++) {
scanf("%d%d", &left, &right);
if(left > right)
swap(left, right);
int temp = dis[right-]-dis[left-];
printf("%d\n", min(temp, sum-temp));
} return ;
}

A1065. A+B and C (64bit) (20)

Description:

Given three integers A, B and C in [-263, 263], you are supposed to tell whether A+B > C.

Input:

The first line of the input gives the positive number of test cases, T (<=10). Then T test cases follow, each consists of a single line containing three integers A, B and C, separated by single spaces.

Ouput:

For each test case, output in one line "Case #X: true" if A+B>C, or "Case #X: false" otherwise, where X is the case number (starting from 1).

Sample Input:

3
1 2 3
2 3 4
9223372036854775807 -9223372036854775808 0

Output:

Case #1: false
Case #2: true
Case #3: false

 #include <cstdio>

 int main()
{
//freopen("E:\\Temp\\input.txt", "r", stdin); int T, tcase = ;
scanf("%d", &T);
while(T--) {
long long a, b, c;
scanf("%lld%lld%lld", &a, &b, &c);
long long res = a+b;
bool flag;
if(a> && b> && res<)
flag = true;
else if(a< && b< && res>=)
flag = false;
else if(res > c)
flag = true;
else
flag = false;
if(flag == true)
printf("Case #%d: true\n", tcase++);
else
printf("Case #%d: false\n", tcase++);
} return ;
}

B1010. 一元多项式求导 (25)

Description:

设计函数求一元多项式的导数。(注:xn(n为整数)的一阶导数为n*xn-1。)

Input:

以指数递降方式输入多项式非零项系数和指数(绝对值均为不超过1000的整数)。数字间以空格分隔。

Output:

以与输入相同的格式输出导数多项式非零项的系数和指数。数字间以空格分隔,但结尾不能有多余空格。注意“零多项式”的指数和系数都是0,但是表示为“0 0”。

Sample Input:

3 4 -5 2 6 1 -2 0

Sample Output:

12 3 -10 1 6 0

 #include <cstdio>

 int main()
{
//freopen("E:\\Temp\\input.txt", "r", stdin); int a[] = {};
int k, e, counter = ;
while(scanf("%d%d", &k, &e) != EOF) {
a[e] = k;
}
a[] = ; for(int i=; i<=; ++i) {
a[i-] = a[i]*i;
a[i] = ;
if(a[i-] != )
counter++;
}
if(counter == )
printf("0 0\n");
else {
for(int i=; i>=; --i) {
if(a[i] != ) {
printf("%d %d", a[i], i);
counter--;
if(counter != )
printf(" ");
}
}
} return ;
}

A1002. A+B for Polynomials (25)

Description:

This time, you are supposed to find A+B where A and B are two polynomials.

Input:

Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial: K N1 aN1 N2 aN2 ... NK aNK, where K is the number of nonzero terms in the polynomial, Ni and aNi (i=1, 2, ..., K) are the exponents and coefficients, respectively. It is given that 1 <= K <= 10,0 <= NK < ... < N2 < N1 <=1000.

Output:

For each test case you should output the sum of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.

Sample Input:

2 1 2.4 0 3.2
2 2 1.5 1 0.5

Sample Output:

3 2 1.5 1 2.9 0 3.2

 #include <cstdio>

 #define MaxSize 1010
double List[MaxSize]; int main()
{
//freopen("E:\\Temp\\input.txt", "r", stdin); int K, expon, counter = ;
double coef;
scanf("%d", &K);
for(int i=; i<K; ++i) {
scanf("%d %lf", &expon, &coef);
List[expon] += coef;
}
scanf("%d", &K);
for(int i=; i<K; ++i) {
scanf("%d %lf", &expon, &coef);
List[expon] += coef;
} for(int i=; i<MaxSize; ++i) {
if(List[i] != )
++counter;
}
printf("%d", counter);
for(int i=MaxSize-; i>=; --i) {
if(List[i] != ) {
printf(" %d %.1f", i, List[i]);
}
} return ;
}

A1009. Product of Polynomials (25)

Description:

This time, you are supposed to find A*B where A and B are two polynomials.

Input:

Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial: K N1 aN1 N2 aN2 ... NK aNK, where K is the number of nonzero terms in the polynomial, Ni and aNi (i=1, 2, ..., K) are the exponents and coefficients, respectively. It is given that 1 <= K <= 10, 0 <= NK < ... < N2 < N1 <=1000.

Output:

For each test case you should output the product of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate up to 1 decimal place.

Sample Input:

2 1 2.4 0 3.2
2 2 1.5 1 0.5

Sample Output:

3 3 3.6 2 6.0 1 1.6

 #include <cstdio>

 #define MaxSize 2010
double List1[MaxSize], List2[MaxSize]; int main()
{
//freopen("E:\\Temp\\input.txt", "r", stdin); int K, expon, counter = ;
double coef;
scanf("%d", &K);
for(int i=; i<K; ++i) {
scanf("%d %lf", &expon, &coef);
List1[expon] += coef;
}
scanf("%d", &K);
for(int i=; i<K; ++i) {
scanf("%d %lf", &expon, &coef);
for(int j=; j<MaxSize; j++)
List2[expon+j] += List1[j]*coef;
} for(int i=; i<MaxSize; ++i) {
if(List2[i] != )
++counter;
}
printf("%d", counter);
for(int i=MaxSize-; i>=; --i) {
if(List2[i] != )
printf(" %d %.1f", i, List2[i]);
} return ;
}
 #include <cstdio>

 struct Poly {
int exp;
double cof;
}poly[];
double ans[]; int main()
{
int n, m, number = ;
scanf("%d", &n);
for(int i=; i<n; ++i)
scanf("%d %lf", &poly[i].exp, &poly[i].cof);
scanf("%d", &m);
for(int i=; i<m; ++i) {
int exp;
double cof;
scanf("%d %lf", &exp, &cof);
for(int j=; j<n; j++)
ans[exp+poly[j].exp] += (cof*poly[j].cof);
} for(int i=; i<=; ++i) {
if(ans[i] != )
++number;
} printf("%d", number);
for(int i=; i>=; --i) {
if(ans[i] != )
printf(" %d %.1f", i, ans[i]);
} return ;
}

PAT/简单模拟习题集(二)的更多相关文章

  1. PAT/简单模拟习题集(一)

    B1001.害死人不偿命的(3n+1)猜想 (15) Description: 卡拉兹(Callatz)猜想: 对任何一个自然数n,如果它是偶数,那么把它砍掉一半:如果它是奇数,那么把(3n+1)砍掉 ...

  2. java web学习总结(二十二) -------------------简单模拟SpringMVC

    在Spring MVC中,将一个普通的java类标注上Controller注解之后,再将类中的方法使用RequestMapping注解标注,那么这个普通的java类就够处理Web请求,示例代码如下: ...

  3. JavaWeb学习总结(四十九)——简单模拟Sping MVC

    在Spring MVC中,将一个普通的java类标注上Controller注解之后,再将类中的方法使用RequestMapping注解标注,那么这个普通的java类就够处理Web请求,示例代码如下: ...

  4. (hdu step 8.1.6)士兵队列训练问题(数据结构,简单模拟——第一次每2个去掉1个,第二次每3个去掉1个.知道队伍中的人数&lt;=3,输出剩下的人 )

    题目: 士兵队列训练问题 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...

  5. spring之mvc原理分析及简单模拟实现

    在之前的一篇博客中已经简单的实现了spring的IOC和DI功能,本文将在之前的基础上实现mvc功能. 一 什么是MVC MVC简单的说就是一种软件实现的设计模式,将整个系统进行分层,M(model ...

  6. C++笔记(7)——一些模拟题:简单模拟、查找元素、图形输出、日期处理、进制转换、字符串处理

    以下内容基本来自<算法笔记>,作者为胡凡,建议直接买书看,我这里只是摘抄部分当笔记,不完整的. 简单模拟 就是一类"题目怎么说你就怎么做"的题目.这类题目不涉及算法,只 ...

  7. sort回调的简单模拟

    本来是准备讲CPP中的std::sort,但因为最近Java用得多,不知怎么的便习惯性走Java角度看问题了,所以这篇文章看起来估计会有点奇怪... 一.简单模拟sort回调 std::sort函数本 ...

  8. WPF简单模拟QQ登录背景动画

    介绍 之所以说是简单模拟,是因为我不知道QQ登录背景动画是怎么实现的.这里是通过一些办法把它简化了,做成了类似的效果 效果图 大体思路 首先把背景看成是一个4行8列的点的阵距,X轴Y轴都是距离70.把 ...

  9. Linux 内核 链表 的简单模拟(2)

    接上一篇Linux 内核 链表 的简单模拟(1) 第五章:Linux内核链表的遍历 /** * list_for_each - iterate over a list * @pos: the & ...

随机推荐

  1. JavaScript基础知识整理(2)

    15.处理图像 注意:(1)在写js文件时,尽量将函数的声明往后写,将函数调用写在前面,这样能够使代码结构很清晰. (2)一个网页中翻转器一般超过3个,所以使用for循环减少重复使用翻转器代码的次数. ...

  2. 前端工作面试问题--摘取自github

    前端工作面试问题 本文包含了一些用于考查候选者的前端面试问题.不建议对单个候选者问及每个问题 (那需要好几个小时).只要从列表里挑选一些,就能帮助你考查候选者是否具备所需要的技能. 备注: 这些问题中 ...

  3. OleDb 内存泄露问题

    近期在定位问题时发现使用OleDb打开很大的Excel文件后,即使什么都不操作Colse掉,内存释放了部分,但是并未回到打开前的水平.在Excel 150M,解压缩后900M的场景下,打开后直接Clo ...

  4. C++写一个带参数运行的程序

    #include <string.h>#include <iostream>#include <cstdlib>using namespace std; int m ...

  5. oracle impdp 导入

    用imp语法导入dmp文件: imp mdm/mdm@SYSWARE  file= ‪E:\Product\9y5s\5.MDM\20161024.DMP  full=y 报错 IMP-00002:无 ...

  6. .Net多文件同时上传(Jquery Uploadify)

    前提:领导给了我一个文件夹,里面有4000千多张产品图片,每张图片已产品编号+产品名称命名,要求是让我把4000多张产品图片上传到服务器端,而且要以产品编码创建n个文件夹,每张图片放到对应的文件夹下. ...

  7. JS组件系列——封装自己的JS组件

    前言:之前分享了那么多bootstrap组件的使用经验,这篇博主打算研究下JS组件的扩展和封装,我们来感受下JQuery为我们提供$.Extend的神奇,看看我们怎么自定义自己的组件,比如我们想扩展一 ...

  8. js execCommand

    JavaScript中的execCommand()命令详解及实例展示 标签: javascriptbuttonfunctioninputobjectdelete 2012-05-07 16:08 14 ...

  9. CAD二次开发

    用C#有一段时间了,由于单位需要,开始接触CAD二次开发,网上一搜,加入CAD开发的群,零零碎碎看了一些文章和博客,没有系统地的知识,能解决一些小问题.最近开始系统学习,再次推荐两本书,一本事纸质版的 ...

  10. 猜数字 事先给定一个数字,然后让用户猜3次,猜不中就输了,猜中就赢了。 每次猜错,给出提示,less or big

    c = 0a = 10while c <3:    b = int(raw_input("请输入数字"))    if b == a:        print " ...