【BZOJ4940】【YNOI2016】这是我自己的发明
阅读此篇文章前请先跟我大喊三声:dllxl!dllxl!dllxl!
咳咳。
题意:
Description
Input
Output
题解:
非常不推荐去阅读原题面(看完题面就知道出题人系列)
众所周知,云南省选全是毒瘤数据结构题
其实这是一道BZOJ二合一。。。BZOJ3083 遥远的国度+BZOJ5016一个简单的询问(题解咕咕咕中)
如果没有换根操作,先来考虑如何处理询问(BZOJ5016):
首先按照dfs序把问题转化到序列上,询问就变成了选取序列中的两个区间,答案即为在两个区间中出现过的每个数分别在两个区间出现次数的乘积;
用公式表达就是:
$ans=\sum\limits_{x=1}^{\infty}sum(l_1,r_1,x)\times sum(l_2,r_2,x)$,其中$sum(l,r,x)$表示数字$x$在区间$[l,r]$中出现的次数。
这个东西。。。不好处理啊。。。
一般这种多组询问且不知所云不好维护的东西都会想到分块,然后快(du)乐(liu)莫队?
那就推一推前缀形式:
$ans=\sum\limits_{x=1}^{\infty}sum(l_1,r_1,x)\times sum(l_2,r_2,x)$
$=\sum\limits_{x=1}^{\infty}(sum(1,r_1,x)-sum(1,l_1-1,x))\times(sum(1,r_2,x)-sum(1,l_2-1,x))$
$=\sum\limits_{x=1}^{\infty}sum(1,r_1,x)·sum(1,r_2,x)-sum(1,r_1,x)·sum(1,l_2-1,x)-sum(1,l_1-1,x)·sum(1,r_2,x)+sum(1,l_1-1,x)·sum(1,l_2-1,x)$
设$f(n,m)=\sum\limits_{x=1}^{\infty}sum(1,n,x)·sum(1,m,x)$
则$ans=f(r_1,r_2)-f(r_1,l_2-1)-f(l_1-1,r_2)+f(l_1-1,l_2-1)$
所以可以询问一拆四然后直接上莫队……
然后看换根(BZOJ3083):
数据结构学傻了->这题一定能用LCT!
啊LCT不能维护子树信息……
数据结构学傻了*2->换根一定能用树剖记录!
啊dfs序会变然后就不能维护了……
因此我们要大力分类讨论:
设根为root,所求子树的根为rt
1.root==rt:continue;
2.root不在rt的子树中:即换根后rt子树中的dfs顺序不会变,所以直接遍历即可;
3.rt在root的子树中:
分析此时的dfs顺序:应该是从root开始,访问到rt的子节点中是root的祖先的节点(记为点F),再访问rt,最后才是其它节点。那么在rt之前访问到的只有F的子树,其它的都是rt子树中的节点。众所周知子树dfs序连续,所以查询rt此时的子树就相当于查询线段树中$[1,l-1]$和$[r+1,n]$中的节点。
所以只有第三种情况特殊求一个F,然后直接维护即可;
求点F可以用树上倍增,当然在bzoj3083原题中是树剖就可以用树剖找。
然后就可以喜闻乐见的把两题拼在一起,码码码~
要注意的是由于换根的三种情况比较麻烦,莫队要拆成九个询问,于是常数upup
最后的时间复杂度是$O(n\sqrt{m})$,原题由于友(du)善(liu)出题人lxl的无私馈赠因此要大力卡常+调参+fread、fwrite才能过,而小视野非常良心的开了两倍时限,于是就开心过掉啦~
代码:
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define inf 2147483647
#define eps 1e-9
using namespace std;
//typedef long long ll;
struct edge{
int v,next;
}a[];
struct nd{
int x,id;
friend bool operator <(nd a,nd b){
return a.x<b.x;
}
}s[];
int BLK,n,m,op,u,v,l,r,rt=,tot=,tim=,cnt=,tmp=,head[],ans[],pos[],cl[],ll[],rr[],num[],in[],out[],dep[],fa[][];
bool isans[];
struct task{
int l,r,op,id;
friend bool operator <(task a,task b){
return pos[a.l]==pos[b.l]?pos[a.r]<pos[b.r]:pos[a.l]<pos[b.l];
}
}t[];
void add(int u,int v){
a[++tot].v=v;
a[tot].next=head[u];
head[u]=tot;
}
void dfs(int u,int ff,int dpt){
in[u]=++tim;
dep[u]=dpt;
fa[u][]=ff;
for(int i=;i<=;i++)fa[u][i]=fa[fa[u][i-]][i-];
for(int tmp=head[u];tmp!=-;tmp=a[tmp].next){
int v=a[tmp].v;
if(v!=ff){
dfs(v,u,dpt+);
}
}
out[u]=tim;
}
/*int lca(int u,int v){
if(dep[u]<dep[v])swap(u,v);
int l=dep[u]-dep[v];
for(int i=19;i>=0;i--){
if((1<<i)&l)u=fa[u][i];
}
if(u==v)return u;
for(int i=19;i>=0;i--){
if(fa[u][i]!=fa[v][i]){
u=fa[u][i],v=fa[v][i];
}
}
return fa[u][0];
}*/
int get(int u){
return (dep[u]<dep[rt]&&in[u]<=in[rt]&&in[rt]<=out[u])?u:rt;
}
int getfa(int u,int l){
for(int i=;i>=;i--){
if((<<i)&l)u=fa[u][i];
}
return u;
}
void mv1l(int x){
tmp+=rr[cl[x]];
ll[cl[x]]++;
}
void mv2l(int x){
tmp-=rr[cl[x]];
ll[cl[x]]--;
}
void mv1r(int x){
tmp+=ll[cl[x]];
rr[cl[x]]++;
}
void mv2r(int x){
tmp-=ll[cl[x]];
rr[cl[x]]--;
}
int main(){
memset(head,-,sizeof(head));
memset(isans,,sizeof(isans));
scanf("%d%d",&n,&m);
BLK=(int)sqrt(n);
for(int i=;i<=n;i++)pos[i]=(i-)/BLK+;
for(int i=;i<=n;i++){
scanf("%d",&s[i].x);
s[i].id=i;
}
for(int i=;i<n;i++){
scanf("%d%d",&u,&v);
add(u,v);
add(v,u);
}
dfs(,,);
sort(s+,s+n+);
for(int i=;i<=n;i++){
if(s[i].x!=s[i-].x)cnt++;
cl[in[s[i].id]]=cnt;
}
cnt=;
for(int i=;i<=m;i++){
scanf("%d%d",&op,&u);
if(op==)rt=u;
else{
scanf("%d",&v);
isans[i]=true;
if(u==v&&u==rt){
t[++cnt]=(task){n,n,,i};
continue;
}
if(u!=v&&v==rt)swap(u,v);
int fu=get(u),fv=get(v);
if(u!=v&&u==rt){
if(fv==v){
v=getfa(rt,dep[rt]-dep[v]-);
t[++cnt]=(task){n,in[v]-,,i};
t[++cnt]=(task){n,n,,i};
t[++cnt]=(task){n,out[v],-,i};
}else{
t[++cnt]=(task){n,out[v],,i};
t[++cnt]=(task){n,in[v]-,-,i};
}
continue;
}
if(fu==u&&fv!=v){
swap(u,v);
swap(fu,fv);
}
if(fu!=u&&fv!=v){
t[++cnt]=(task){out[u],out[v],,i};
t[++cnt]=(task){out[u],in[v]-,-,i};
t[++cnt]=(task){in[u]-,in[v]-,,i};
t[++cnt]=(task){in[u]-,out[v],-,i};
}else if(fu!=u&&fv==v){
v=getfa(rt,dep[rt]-dep[v]-);
t[++cnt]=(task){out[u],in[v]-,,i};
t[++cnt]=(task){out[u],n,,i};
t[++cnt]=(task){out[u],out[v],-,i};
t[++cnt]=(task){in[u]-,in[v]-,-,i};
t[++cnt]=(task){in[u]-,n,-,i};
t[++cnt]=(task){in[u]-,out[v],,i};
}else{
u=getfa(rt,dep[rt]-dep[u]-);
v=getfa(rt,dep[rt]-dep[v]-);
t[++cnt]=(task){n,in[v]-,,i};
t[++cnt]=(task){n,n,,i};
t[++cnt]=(task){n,out[v],-,i};
t[++cnt]=(task){out[u],in[v]-,-,i};
t[++cnt]=(task){out[u],n,-,i};
t[++cnt]=(task){out[u],out[v],,i};
t[++cnt]=(task){in[u]-,in[v]-,,i};
t[++cnt]=(task){in[u]-,n,,i};
t[++cnt]=(task){in[u]-,out[v],-,i};
}
}
}
sort(t+,t+cnt+);
l=t[].l,r=t[].r;
for(int i=;i<=l;i++)ll[cl[i]]++;
for(int i=;i<=r;i++){
rr[cl[i]]++;
tmp+=ll[cl[i]];
}
ans[t[].id]+=tmp*t[].op;
for(int i=;i<=cnt;i++){
while(l<t[i].l)mv1l(++l);
while(l>t[i].l)mv2l(l--);
while(r<t[i].r)mv1r(++r);
while(r>t[i].r)mv2r(r--);
ans[t[i].id]+=tmp*t[i].op;
}
for(int i=;i<=m;i++){
if(isans[i])printf("%d\n",ans[i]);
}
return ;
}
【BZOJ4940】【YNOI2016】这是我自己的发明的更多相关文章
- bzoj4940: [Ynoi2016]这是我自己的发明
用dfs序把询问表示成询问dfs序的两个区间中的信息 拆成至多9个询问(询问dfs序的两个前缀),对这些询问用莫队处理,时间复杂度$O(n\sqrt{m})$ #include<bits/std ...
- bzoj4940 [Ynoi2016]这是我自己的发明 莫队+dfs序
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4940 题解 对于换根操作,处理方法就很套路了. 首先先假定以 \(1\) 为根做一遍 dfs, ...
- 【bzoj4940】[Ynoi2016]这是我自己的发明 DFS序+树上倍增+莫队算法
题目描述 给一个树,n 个点,有点权,初始根是 1. m 个操作,每次操作: 1. 将树根换为 x. 2. 给出两个点 x,y,从 x 的子树中选每一个点,y 的子树中选每一个点,如果两个点点权相等, ...
- 【bzoj4940】这是我自己的发明
Portal --> bzoj4940 Solution (原题这题面到底是..怎么回事啊深深的套路qwq) 感觉自己对根号的算法还是很..没有感觉啊== 实际上这题和bzoj5016没有任何区 ...
- 洛谷P4689 [Ynoi2016]这是我自己的发明(莫队,树的dfn序,map,容斥原理)
洛谷题目传送门 具体思路看别的题解吧.这里只提两个可能对常数和代码长度有优化的处理方法. I 把一个询问拆成\(9\)个甚至\(16\)个莫队询问实在是有点珂怕. 发现询问的一边要么是一个区间,要么是 ...
- [Ynoi2016]这是我自己的发明 莫队
传送门:here 很棒的莫队题啊..... 题意: 有一棵$ n$个点的树,树上每个点有点权,有$ m$次询问: 操作1:给定两个点$ x,y$,求二元组$ (a,b)$的数量,要求$ a$在$ x$ ...
- 洛谷P4689 [Ynoi2016]这是我自己的发明 [莫队]
传送门 ynoi中比较良心不卡常的题. 思路 没有换根操作时显然可以变成dfs序莫队随便搞. 换根操作时一个子树可以变成两段区间的并集,也随便搞搞就好了. 这题完全不卡常,随便过. 代码 #inclu ...
- [Ynoi2016]这是我自己的发明(莫队)
话说这道题数据是不是都是链啊,我不手动扩栈就全 \(RE\)... 不过 \(A\) 了这题还是很爽的,通过昨晚到今天早上的奋斗,终于肝出了这题 其实楼上说的也差不多了,就是把区间拆掉然后莫队瞎搞 弱 ...
- YNOI2016 这是我自己的发明
看到这个标题立刻想到:. “绝地科学家,八倍不屏息啊,八百里外把头打啊...” 首先我们发现如果只考虑第二个操作,这棵树就是假的,我们可以直接莫队解决 如果考虑换根的话...可以把一个操作换成小于等于 ...
- Luogu4689 [Ynoi2016]这是我自己的发明 【莫队】
题目链接:洛谷 又来做Ynoi里面的水题了... 首先换根的话是一个套路,首先以1为根dfs,然后画一画就知道以rt为根,x的子树是什么了.可以拆分为2个dfs连续段. 然后如果要计算\([l_1,r ...
随机推荐
- java导出html页面
http://blog.csdn.net/zhyh1986/article/details/8727523#t6 http://blog.csdn.net/zuozuofuwaiwai/article ...
- 04 SqlServer
数据库的注释 –(两个横线) 主键表 外键表 主键,组合主键 SqlServer 使用附加 权限 主文件mdf 日志文件ldf 数据类型 char varchar nchar nvarchar cha ...
- JS中的与冒号的作用、箭头函数相关的一道题
相关知识来自于一道题: 使用ES6的箭头函数语法可以直接省略 function 和 return 关键字,比如 function (){return 1;} 就可以简化成 () => 1 , 但 ...
- Vue学习之路第五篇:v-bind
v-bind:是Vue提供的用于绑定html属性的指令. html中常见的属性有:id.class.src.title.style等,他们都是以 名称/值对 的形式出现,如:id="firs ...
- laravel 知识点总结
1.eloquent 关系理解: https://lvwenhan.com/laravel/423.html
- sort函数用法详解
用于C++中,对给定区间所有元素进行排序.头文件是#include <algorithm> sort函数进行快速排序,时间复杂度为n*log2n,比冒泡之类的要省时不少 Sort函数使用模 ...
- ubuntu/wireshark --Lua: Error during loading: [string "/usr/share/wireshark/init.lua"]:45问题解决
错误如下: 解决方案:修改init.lua 直接运行wireshark的话会报错: Lua: Error during loading:[string "/usr/share/wiresha ...
- js应用中的小细节-时间戳的转换和input输入框有效数字
1 input输入框内value值保留有效数字,js自带的方法.toFixed(),但是直接使用会报错,因为不论输入框内输入汉字.字母还是数字,类型都是string.解决的办法是将其转换为number ...
- PHP读取XML数据中CDATA内数值
// 在开发过程中遇到对XML获取时候加载 CDATA 无法读取内部的数值(例如微信平台的返回值) $content = simplexml_load_string('<content>& ...
- NHibernate3剖析:Mapping篇之集合映射基础(3):List映射
系列引入 NHibernate3.0剖析系列分别从Configuration篇.Mapping篇.Query篇.Session策略篇.应用篇等方面全面揭示NHibernate3.0新特性和应用及其各种 ...