hdu4870 Rating (高斯消元或者dp)
Rating
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 213 Accepted Submission(s): 126
Special Judge
value of rating equals to zero. After the user participates in the contest held by "TopTopTopCoder", her/his rating will be updated depending on her/his rank. Supposing that her/his current rating is X, if her/his rank is between on 1-200 after contest, her/his
rating will be min(X+50,1000). Her/His rating will be max(X-100,0) otherwise. To reach 1000 points as soon as possible, this little girl registered two accounts. She uses the account with less rating in each contest. The possibility of her rank between on
1 - 200 is P for every contest. Can you tell her how many contests she needs to participate in to make one of her account ratings reach 1000 points?
1.000000
0.814700
39.000000
82.181160
一场比赛,赢了能够得50分,输了扣100分,分数会超过1000和不会小于0.有个人用2个账号,始终用分数低的号比赛。已知赢一场比赛的概率为p求打到1000分的场数的期望值。
1、能够用高斯消元,
令E(X,Y)为账号分数为x,y打到1000的数学期望。
则有:
E(X,Y)=PE(X1,Y1)+(1-P)E(X2,Y2)+1,X1,Y1是XY分数赢了的分数。X2,Y2相应是输了的分数。如果X>=Y,每次比赛用Y的账号,就会有210条方程。用mark数组标记XY分数相应的系数的索引。
代码:
#include <iostream>
#include <cmath>
#include <stdio.h>
#include <algorithm>
#include <ctime>
#include <vector>
#include <cstring>
#include <map>
#include <string>
#include <queue>
using namespace std;
#define LL long long
#define ULL unsigned long long
//#define REP(i,n) for(int i=0;i<n;++i)
#define REP(i,a,b) for(int i=a;i<=b;++i)
#define INFLL (1LL)<<62
#define mset(a) memset(a,0,sizeof a)
#define FR(a) freopen(a,"r",stdin)
#define FW(a) freopen(a,"w",stdout)
#define PI 3.141592654
const LL MOD = 1000000007;
const int maxn=222;
const double eps=1e-9;
double a[maxn][maxn];
int mark[25][25];
int cnt;
double gauss()
{
int m=211;
int n=210;
for(int i=0;i<n;i++)
{
int k=i;
for(;k<n;++k)
if(fabs(a[k][i])>eps) break;
if(i!=k)
for(int j=0;j<=n;++j)
swap(a[i][j],a[k][j]);
for(int j=0;j<n;++j)
{
if(i==j) continue;
if(fabs(a[j][i])<eps) continue;
double x=a[j][i]/a[i][i];
for(k=i;k<m;++k)
a[j][k]-=a[i][k]*x;
}
}
return a[0][n]/a[0][0];
} void makeMat(double p)
{
mset(a);
int m=211;
int x=0,y=0;
for(y=0;y<20;++y){
for(x=0;x<y;++x)
{
int temp=mark[y][x];
a[temp][temp]=1;
a[temp][m-1]=1;
int temp2=mark[y][max(0,x-2)];
a[temp][temp2]-=1-p;
temp2=mark[y][x+1];
a[temp][temp2]-=p;
}
int t=mark[y][y];
a[t][t]=1;
a[t][m-1]=1;
int tt=mark[y][max(0,x-2)];
a[t][tt]-=1-p;
tt=mark[x+1][x];
a[t][tt]-=p;
}
} int main()
{
double p;
cnt=0;
mset(mark);
REP(i,0,20)
REP(j,0,i)
mark[i][j]=cnt++;
while (cin>>p)
{
makeMat(p);
printf("%.6lf\n",gauss());
}
}
2、用dp
首先离散化,由于每场比赛分数的变化都是50的倍数。令每场赢了得1分。输了扣2分。
dp[i]表示单场比赛从i分数提高到i+1的分数的期望值。
则有:dp[i]=p+(1-p)(dp[i-2]+dp[i-1]+dp[i]+1)
==>dp[i]=1/p+(1-p)/p*(dp[i-2]+dp[i-1]);dp[0]=1/p,dp[1]=1/p/p;
用ans[i][i]表示两个账号分数从0打到ii的期望,对于账号分数的上升,他们是交错上升的。意思是当他们分数一样的时候,前面的赢一分,当前面的赢了一分之后,下一场就后面的赢。所以仅仅须要维护ans[i+1][i] 和ans[i+1][i+1],且
ans[i+1][i]=ans[i][i]+dp[i],ans[i+1][i+1]=ans[i+1][i]+dp[i],
代码:
#include <iostream>
#include <cmath>
#include <stdio.h>
using namespace std;
double dp[22];
double ans[22][22]; int main()
{
double p;
while (cin>>p)
{
dp[0]=1/p;
dp[1]=1/p/p;
for(int i=2;i<20;++i)
dp[i] = 1+(1-p)/p*(dp[i-2]+dp[i-1]+1);
ans[0][0]=0;
for (int i=0;i<20;++i)
{
ans[i+1][i]=ans[i][i]+dp[i];
ans[i+1][i+1]=ans[i+1][i]+dp[i];
}
printf("%.6lf\n",ans[20][19]);
}
}
hdu4870 Rating (高斯消元或者dp)的更多相关文章
- BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]
2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...
- CF113D 高斯消元、dp
题目链接 https://codeforces.com/contest/113/problem/D 思路 \(k[i]=\frac{1-p[i]}{ru[i]}\) f[i][j]表示经过i和j的次数 ...
- LightOJ 1151 - Snakes and Ladders 高斯消元+概率DP
首先来个期望的论文,讲的非常好,里面也提到了使用线性方程组求解,尤其适用于有向图的期望问题. 算法合集之<浅析竞赛中一类数学期望问题的解决方法> http://www.lightoj.co ...
- hdu 4870 rating(高斯消元求期望)
Rating Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Sub ...
- Broken robot CodeForces - 24D (三对角矩阵简化高斯消元+概率dp)
题意: 有一个N行M列的矩阵,机器人最初位于第i行和第j列.然后,机器人可以在每一步都转到另一个单元.目的是转到最底部(第N个)行.机器人可以停留在当前单元格处,向左移动,向右移动或移动到当前位置下方 ...
- [luogu2973]driving out the piggies 驱逐猪猡【高斯消元+概率DP】
看到题面的那一刻,我是绝望的ORZ 图论加概率期望加好像不沾边的高斯消元???我人直接傻掉 还没学过概率期望的我果断向题解屈服了(然后还是傻掉了两节课来找线性方程.. Description 奶牛们建 ...
- Codeforces 446D - DZY Loves Games(高斯消元+期望 DP+矩阵快速幂)
Codeforces 题目传送门 & 洛谷题目传送门 神仙题,%%% 首先考虑所有格子都是陷阱格的情况,那显然就是一个矩阵快速幂,具体来说,设 \(f_{i,j}\) 表示走了 \(i\) 步 ...
- BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 [高斯消元 概率DP]
1778: [Usaco2010 Hol]Dotp 驱逐猪猡 题意:一个炸弹从1出发p/q的概率爆炸,否则等概率走向相邻的点.求在每个点爆炸的概率 高斯消元求不爆炸到达每个点的概率,然后在一个点爆炸就 ...
- BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡(高斯消元+期望dp)
传送门 解题思路 设\(f(x)\)表示到\(x\)这个点的期望次数,那么转移方程为\(f(x)=\sum\frac{f(u)*(1 - \frac{p}{q})}{deg(u)}\),其中\(u\) ...
随机推荐
- nyoj--284--坦克大战(bfs模板)
坦克大战 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 Many of us had played the game "Battle city" i ...
- 09.ws复杂数据类型数据传输
和ajax的共同点是都是自己组装消息自己解析消息.这种方式的好处是一点都不用生成客户端代码.这两种方式(ajax和HttpUrlConnection)的好处是一点都不用生成客户端代码. WSDL这个文 ...
- 关于打包压缩几种格式(gzip,bzip2,xz)的试验对比
要通过脚本进行备份,必然将会应用到压缩技术,这里简单针对几个常见的格式进行测验,从而得到一种合适的方式. 这里以一个应用目录做例子: [root@isj-test-5 mnt]$du -sh * 66 ...
- mysqls,为node.js而编写的sql语句生成插件 (crud for mysql).
It is written in JavaScript,crud for mysql.You can also use transactions very easily. mysqls 一款专为nod ...
- Python笔记(十)——操作SQLServer
#encoding=utf-8 # 先通过如下命令安装模块 # pip install --trusted-host pypi.python.org pymssql # pip类似于RedHat里的y ...
- caffe 参数介绍 solver.prototxt
转载自 http://blog.csdn.net/cyh_24/article/details/51537709 solver.prototxt net: "models/bvlc_alex ...
- jQuery hooks源码学习
段落不够清晰,待整理 看jQuery源码的时候,经常见到含有hooks标志的对象,如cssHooks, attrHooks, propHooks, valHooks. 下面对其中的一段进行解读. jQ ...
- mybatis 高级映射和spring整合之逆向工程(7)
mybatis 高级映射和spring整合之逆向工程(7) 4.0 逆向工程 4.1 mybatis需要程序员自己编写sql语句,mybatis官方提供逆向工程,可以针对单表自动生成mybatis执行 ...
- Android图片剪裁库
最近利用一周左右的业余时间,终于完成了一个Android图片剪裁库,核心功能是根据自己的理解实现的,部分代码参考了Android源码的图片剪裁应用.现在将该代码开源在Github上以供大家学习和使用, ...
- SQL触发器 inset自学经验
本人建立了一个特价汇网站,想要记录每个商品的点击量和整个网站的访问量,于是就想用sql 触发器来实现 drop trigger tgr_cg_records_update_column create ...