【学习笔记】关于最大公约数(gcd)的定理
手动博客搬家: 本文发表于20181004 00:21:28, 原地址https://blog.csdn.net/suncongbo/article/details/82935140
结论1
\[\gcd(x^{a}-1,x^{b}-1)=x^{\gcd(a,b)}-1\]
证明:
采用数学归纳法。
令\(a=kb+p\), 则有\(\gcd(x^{a}-1,x^{b}-1)=\gcd(x^{kb+p}-1,x^b-1)=\gcd(x^p(x^{kb}-1)+x^p-1,x^b-1)=\gcd(x^p-1,x^b-1)=\gcd(x^b-1,x^{(a\mod b)}-1)\).
中间一步利用到了如下结论: \((x-1)|(x^k-1)\), 证明直接因式分解: \(x^k-1=(x-1)(\sum^{k-1}_{i=0} x_i)\)
结论2
\[\gcd(Fib(a),Fib(b))=Fib(\gcd(a,b))\]
其中\(Fib(x)\)为Fibonacci数列第\(x\)项。
证明:
首先证明一个结论: \(Fib(a+b)=Fib(a-1)Fib(b)+Fib(a)Fib(b+1)\)
采用数学归纳法: \(b=1, Fib(a+b)=Fib(a+1)=Fib(a)+Fib(a-1)=Fib(a-1)Fib(1)+Fib(a)Fib(2)\)
\(b=2, Fib(a+b)=Fib(a+2)=Fib(a+1)+Fib(a)=2Fib(a)+Fib(a-1)=Fib(a-1)Fib(2)+Fib(a)Fib(3)\)
对于更大的\(b\), 假设有结论对\(b-1, b-2\)成立,则\(Fib(a+b)=Fib(a+b-1)+Fib(a+b-2)=Fib(a-1)Fib(b-1)+Fib(a)Fib(b)+Fib(a-1)Fib(b-2)+Fib(a)Fib(b-1)=Fib(a-1)(Fib(b-2)+Fib(b-1))+Fib(a)(Fib(b-1)+Fib(b))=Fib(a-1)Fib(b)+Fib(a)Fib(b+1)\)
因此假设成立。
然后考虑如何证明\(\gcd\): 首先\(\gcd(Fib(n),Fib(n-1))=1\) (数学归纳同样可证),然后不妨设\(a>b\), 依然可以数学归纳证明,假设上式对于\(a,b\)成立,则\(\gcd(Fib(a+b),Fib(a))=\gcd(Fib(a-1)Fib(b)+Fib(a)Fib(b+1),Fib(a))=\gcd(Fib(a-1)Fib(b),Fib(a))=\gcd(Fib(b),Fib(a))=Fib(\gcd(a,b))=Fib(\gcd(a+b,a))\).
证毕。
推广: 由于\(f(a+b)=f(a-1)f(b)+f(a)f(b+1)\)对多种能表示成\(f(n)=af(n-1)+bf(n-2), (\gcd(a,b)=1)\)的递推关系式都适用,因此对于此类关系式都有\(\gcd(f(a),f(b))=f(\gcd(a,b))\).
【学习笔记】关于最大公约数(gcd)的定理的更多相关文章
- swift学习笔记 - swift3.0用GCD实现计时器
swift3.0之后,GCD的语法发生了翻天覆地的变化,从过去的c语法变成了点语法,下面是变化之后用GCD实现计时器的方法: 先贴代码: // 定义需要计时的时间 var timeCount = 60 ...
- 学习笔记 - 中国剩余定理&扩展中国剩余定理
中国剩余定理&扩展中国剩余定理 NOIP考完回机房填坑 ◌ 中国剩余定理 处理一类相较扩展中国剩余定理更特殊的问题: 在这里要求 对于任意i,j(i≠j),gcd(mi,mj)=1 (就是互素 ...
- iOS学习笔记(8)——GCD初探
1. AppDelegate.m #import "AppDelegate.h" #import "ViewController.h" @interface A ...
- poj1265&&2954 [皮克定理 格点多边形]【学习笔记】
Q:皮克定理这种一句话的东西为什么还要写学习笔记啊? A:多好玩啊... PS:除了蓝色字体之外都是废话啊... Part I 1.顶点全在格点上的多边形叫做格点多边形(坐标全是整数) 2.维基百科 ...
- 【学习笔记】Polya定理
笔者经多番周折终于看懂了\(\text{Burnside}\)定理和\(\text{Polya}\)定理,特来写一篇学习笔记来记录一下. 群定义 定义:群\((G,·)\)是一个集合与一个运算·所定义 ...
- OI数学 简单学习笔记
基本上只是整理了一下框架,具体的学习给出了个人认为比较好的博客的链接. PART1 数论部分 最大公约数 对于正整数x,y,最大的能同时整除它们的数称为最大公约数 常用的:\(lcm(x,y)=xy\ ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose)【莫队算法裸题&&学习笔记】
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 9894 Solved: 4561[Subm ...
- 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Rabin+Pollard_Rho)
注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex ...
- OI知识点|NOIP考点|省选考点|教程与学习笔记合集
点亮技能树行动-- 本篇blog按照分类将网上写的OI知识点归纳了一下,然后会附上蒟蒻我的学习笔记或者是我认为写的不错的专题博客qwqwqwq(好吧,其实已经咕咕咕了...) 基础算法 贪心 枚举 分 ...
随机推荐
- Android 高亮指示层提示
此库出自翔神之手 用起来绝对方便 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0J ...
- 用Arduino+OSC建立一个iPad铁路王国巡视机
翻译自:http://blog.mydream.com.hk/howto/build-up-a-ipad-plarail-patrol-with-arduino-osc 简单介绍 这个教程告诉你怎样建 ...
- Codeforces--629A--Far Relative’s Birthday Cake(暴力模拟)
Far Relative's Birthday Cake Time Limit: 1000MS Memory Limit: 262144KB 64bit IO Format: %I64d &a ...
- iOS获取相册/相机图片-------自定义获取图片小控件
一.功能简介 1.封装了一个按钮,点击按钮,会提示从何处获取图片:如果设备支持相机,可以从相机获取,同时还可以从手机相册获取图片. 2.选择图片后,有一个block回调,根据需求,将获得的图片拿来使用 ...
- sdut1269 走迷宫(dfs)
http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=1269 连着做了三个基本的dfs,终于弄懂了搜索 ...
- Error creating bean with name " "问题
Spring MVC框架中使用@Autowired自动装配时出现 Error creating bean with name " "问题的解决方式在spring的xml配置文件be ...
- Python 36 GIL全局解释器锁 、vs自定义互斥锁
一:GIL全局解释器锁介绍 在CPython中,全局解释器锁(或GIL)是一个互斥锁, 它阻止多个本机线程同时执行Python字节码.译文:之所以需要这个锁, 主要是因为CPython的内存管理不是线 ...
- Cent OS 6/7 中通过yum安装软件时提示cannot find a valid baseurl...的解决方法
目录 1 问题描述 2 解决方法一 (Cent OS 7中有效) 3 解决方法二 (Cent OS 7中无效) 1 问题描述 新申请了虚拟机, 系统版本是Cent OS 7.2. 在安装软件的过程中, ...
- LocalDateTime相关处理,得到零点以及24点值,最近五分钟点位,与Date互转,时间格式
最近一直使用LocalDateTime,老是忘记怎么转换,仅此记录一下 import java.time.Instant; import java.time.LocalDateTime; import ...
- 【NOI1999、LOJ#10019】生日蛋糕(搜索、最优化剪枝、可行性剪枝)
主要是剪枝的问题,见代码,讲的很详细 #include<iostream> #include<cstdio> #include<cmath> #include< ...