手动博客搬家: 本文发表于20181004 00:21:28, 原地址https://blog.csdn.net/suncongbo/article/details/82935140

结论1

\[\gcd(x^{a}-1,x^{b}-1)=x^{\gcd(a,b)}-1\]
证明:
采用数学归纳法。
令\(a=kb+p\), 则有\(\gcd(x^{a}-1,x^{b}-1)=\gcd(x^{kb+p}-1,x^b-1)=\gcd(x^p(x^{kb}-1)+x^p-1,x^b-1)=\gcd(x^p-1,x^b-1)=\gcd(x^b-1,x^{(a\mod b)}-1)\).
中间一步利用到了如下结论: \((x-1)|(x^k-1)\), 证明直接因式分解: \(x^k-1=(x-1)(\sum^{k-1}_{i=0} x_i)\)

结论2

\[\gcd(Fib(a),Fib(b))=Fib(\gcd(a,b))\]
其中\(Fib(x)\)为Fibonacci数列第\(x\)项。
证明:
首先证明一个结论: \(Fib(a+b)=Fib(a-1)Fib(b)+Fib(a)Fib(b+1)\)
采用数学归纳法: \(b=1, Fib(a+b)=Fib(a+1)=Fib(a)+Fib(a-1)=Fib(a-1)Fib(1)+Fib(a)Fib(2)\)
\(b=2, Fib(a+b)=Fib(a+2)=Fib(a+1)+Fib(a)=2Fib(a)+Fib(a-1)=Fib(a-1)Fib(2)+Fib(a)Fib(3)\)
对于更大的\(b\), 假设有结论对\(b-1, b-2\)成立,则\(Fib(a+b)=Fib(a+b-1)+Fib(a+b-2)=Fib(a-1)Fib(b-1)+Fib(a)Fib(b)+Fib(a-1)Fib(b-2)+Fib(a)Fib(b-1)=Fib(a-1)(Fib(b-2)+Fib(b-1))+Fib(a)(Fib(b-1)+Fib(b))=Fib(a-1)Fib(b)+Fib(a)Fib(b+1)\)
因此假设成立。
然后考虑如何证明\(\gcd\): 首先\(\gcd(Fib(n),Fib(n-1))=1\) (数学归纳同样可证),然后不妨设\(a>b\), 依然可以数学归纳证明,假设上式对于\(a,b\)成立,则\(\gcd(Fib(a+b),Fib(a))=\gcd(Fib(a-1)Fib(b)+Fib(a)Fib(b+1),Fib(a))=\gcd(Fib(a-1)Fib(b),Fib(a))=\gcd(Fib(b),Fib(a))=Fib(\gcd(a,b))=Fib(\gcd(a+b,a))\).
证毕。
推广: 由于\(f(a+b)=f(a-1)f(b)+f(a)f(b+1)\)对多种能表示成\(f(n)=af(n-1)+bf(n-2), (\gcd(a,b)=1)\)的递推关系式都适用,因此对于此类关系式都有\(\gcd(f(a),f(b))=f(\gcd(a,b))\).

【学习笔记】关于最大公约数(gcd)的定理的更多相关文章

  1. swift学习笔记 - swift3.0用GCD实现计时器

    swift3.0之后,GCD的语法发生了翻天覆地的变化,从过去的c语法变成了点语法,下面是变化之后用GCD实现计时器的方法: 先贴代码: // 定义需要计时的时间 var timeCount = 60 ...

  2. 学习笔记 - 中国剩余定理&扩展中国剩余定理

    中国剩余定理&扩展中国剩余定理 NOIP考完回机房填坑 ◌ 中国剩余定理 处理一类相较扩展中国剩余定理更特殊的问题: 在这里要求 对于任意i,j(i≠j),gcd(mi,mj)=1 (就是互素 ...

  3. iOS学习笔记(8)——GCD初探

    1. AppDelegate.m #import "AppDelegate.h" #import "ViewController.h" @interface A ...

  4. poj1265&&2954 [皮克定理 格点多边形]【学习笔记】

    Q:皮克定理这种一句话的东西为什么还要写学习笔记啊? A:多好玩啊... PS:除了蓝色字体之外都是废话啊...  Part I 1.顶点全在格点上的多边形叫做格点多边形(坐标全是整数) 2.维基百科 ...

  5. 【学习笔记】Polya定理

    笔者经多番周折终于看懂了\(\text{Burnside}\)定理和\(\text{Polya}\)定理,特来写一篇学习笔记来记录一下. 群定义 定义:群\((G,·)\)是一个集合与一个运算·所定义 ...

  6. OI数学 简单学习笔记

    基本上只是整理了一下框架,具体的学习给出了个人认为比较好的博客的链接. PART1 数论部分 最大公约数 对于正整数x,y,最大的能同时整除它们的数称为最大公约数 常用的:\(lcm(x,y)=xy\ ...

  7. BZOJ 2038: [2009国家集训队]小Z的袜子(hose)【莫队算法裸题&&学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 9894  Solved: 4561[Subm ...

  8. 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Rabin+Pollard_Rho)

    注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex ...

  9. OI知识点|NOIP考点|省选考点|教程与学习笔记合集

    点亮技能树行动-- 本篇blog按照分类将网上写的OI知识点归纳了一下,然后会附上蒟蒻我的学习笔记或者是我认为写的不错的专题博客qwqwqwq(好吧,其实已经咕咕咕了...) 基础算法 贪心 枚举 分 ...

随机推荐

  1. 欢聚时代校园招聘java开发一面经历

    收到yy短信通知笔试通过后隔天就一面了,面试时间是下午1点半,跟另外一个同学在1点半的时候已经到了目的酒店,发现面试都集中在一个大厅,摆了非常多桌椅,由不同的面试关在面试.等到2点多的时候才到我.先说 ...

  2. 传智播客C/C++学员荣膺微软&Cocos 2d-x黑客松最佳创新奖

     6月30日,历时32小时的微软开放技术Cocos 2d-x 编程黑客松在北京望京微软大厦成功落下帷幕,这是微软开放技术首次联合Cocos 2d-x 在中国举办黑客松. 此次活动共同拥有包含传智播 ...

  3. Mybatis 碰到的一些问题

    1. SQL语句参数无法获取:nested exception is org.apache.ibatis.reflection.ReflectionException: There is no get ...

  4. 2017 Multi-University Training Contest - Team 2&&hdu 6047 Maximum Sequence

    Maximum Sequence Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  5. bzoj 3231 [ Sdoi 2008 ] 递归数列 —— 矩阵乘法

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3231 裸矩阵乘法. 代码如下: #include<iostream> #incl ...

  6. DCloud-MUI:AJAX

    ylbtech-DCloud-MUI:AJAX 1.返回顶部 1.   2. 2.返回顶部   3.返回顶部   4.返回顶部   5.返回顶部 1. http://dev.dcloud.net.cn ...

  7. Android单选中listview中的一项

    public class LipsListAdapter extends BaseAdapter { private Context context; private List<Lips> ...

  8. PCB 一键远程桌面+RDP文件生成

    最近在写个内网INCAM内网授权工具中,在服务端监听客户端请求后,后台自动处理客户端请求并远程客户端 这里记录3个点. 一.运行RDP文件后,正常会有下图2个弹窗,怎么可以关闭这2个弹窗呢, 通过模拟 ...

  9. Appium + python - long_press定位操作实例

    from appium.webdriver.common.touch_action import TouchActionfrom appium import webdriverimport timei ...

  10. 爬虫框架Scrapy与Web框架Django结合

    在做两者结合之前,需要先准备一个可以独立运行的Scrapy框架和一个可以独立运行的Django框架! 当准备好这两个框架之后,就可以做两者的结合了. 一. 把scrapy框架,移动到Django框架的 ...