【学习笔记】关于最大公约数(gcd)的定理
手动博客搬家: 本文发表于20181004 00:21:28, 原地址https://blog.csdn.net/suncongbo/article/details/82935140
结论1
\[\gcd(x^{a}-1,x^{b}-1)=x^{\gcd(a,b)}-1\]
证明:
采用数学归纳法。
令\(a=kb+p\), 则有\(\gcd(x^{a}-1,x^{b}-1)=\gcd(x^{kb+p}-1,x^b-1)=\gcd(x^p(x^{kb}-1)+x^p-1,x^b-1)=\gcd(x^p-1,x^b-1)=\gcd(x^b-1,x^{(a\mod b)}-1)\).
中间一步利用到了如下结论: \((x-1)|(x^k-1)\), 证明直接因式分解: \(x^k-1=(x-1)(\sum^{k-1}_{i=0} x_i)\)
结论2
\[\gcd(Fib(a),Fib(b))=Fib(\gcd(a,b))\]
其中\(Fib(x)\)为Fibonacci数列第\(x\)项。
证明:
首先证明一个结论: \(Fib(a+b)=Fib(a-1)Fib(b)+Fib(a)Fib(b+1)\)
采用数学归纳法: \(b=1, Fib(a+b)=Fib(a+1)=Fib(a)+Fib(a-1)=Fib(a-1)Fib(1)+Fib(a)Fib(2)\)
\(b=2, Fib(a+b)=Fib(a+2)=Fib(a+1)+Fib(a)=2Fib(a)+Fib(a-1)=Fib(a-1)Fib(2)+Fib(a)Fib(3)\)
对于更大的\(b\), 假设有结论对\(b-1, b-2\)成立,则\(Fib(a+b)=Fib(a+b-1)+Fib(a+b-2)=Fib(a-1)Fib(b-1)+Fib(a)Fib(b)+Fib(a-1)Fib(b-2)+Fib(a)Fib(b-1)=Fib(a-1)(Fib(b-2)+Fib(b-1))+Fib(a)(Fib(b-1)+Fib(b))=Fib(a-1)Fib(b)+Fib(a)Fib(b+1)\)
因此假设成立。
然后考虑如何证明\(\gcd\): 首先\(\gcd(Fib(n),Fib(n-1))=1\) (数学归纳同样可证),然后不妨设\(a>b\), 依然可以数学归纳证明,假设上式对于\(a,b\)成立,则\(\gcd(Fib(a+b),Fib(a))=\gcd(Fib(a-1)Fib(b)+Fib(a)Fib(b+1),Fib(a))=\gcd(Fib(a-1)Fib(b),Fib(a))=\gcd(Fib(b),Fib(a))=Fib(\gcd(a,b))=Fib(\gcd(a+b,a))\).
证毕。
推广: 由于\(f(a+b)=f(a-1)f(b)+f(a)f(b+1)\)对多种能表示成\(f(n)=af(n-1)+bf(n-2), (\gcd(a,b)=1)\)的递推关系式都适用,因此对于此类关系式都有\(\gcd(f(a),f(b))=f(\gcd(a,b))\).
【学习笔记】关于最大公约数(gcd)的定理的更多相关文章
- swift学习笔记 - swift3.0用GCD实现计时器
swift3.0之后,GCD的语法发生了翻天覆地的变化,从过去的c语法变成了点语法,下面是变化之后用GCD实现计时器的方法: 先贴代码: // 定义需要计时的时间 var timeCount = 60 ...
- 学习笔记 - 中国剩余定理&扩展中国剩余定理
中国剩余定理&扩展中国剩余定理 NOIP考完回机房填坑 ◌ 中国剩余定理 处理一类相较扩展中国剩余定理更特殊的问题: 在这里要求 对于任意i,j(i≠j),gcd(mi,mj)=1 (就是互素 ...
- iOS学习笔记(8)——GCD初探
1. AppDelegate.m #import "AppDelegate.h" #import "ViewController.h" @interface A ...
- poj1265&&2954 [皮克定理 格点多边形]【学习笔记】
Q:皮克定理这种一句话的东西为什么还要写学习笔记啊? A:多好玩啊... PS:除了蓝色字体之外都是废话啊... Part I 1.顶点全在格点上的多边形叫做格点多边形(坐标全是整数) 2.维基百科 ...
- 【学习笔记】Polya定理
笔者经多番周折终于看懂了\(\text{Burnside}\)定理和\(\text{Polya}\)定理,特来写一篇学习笔记来记录一下. 群定义 定义:群\((G,·)\)是一个集合与一个运算·所定义 ...
- OI数学 简单学习笔记
基本上只是整理了一下框架,具体的学习给出了个人认为比较好的博客的链接. PART1 数论部分 最大公约数 对于正整数x,y,最大的能同时整除它们的数称为最大公约数 常用的:\(lcm(x,y)=xy\ ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose)【莫队算法裸题&&学习笔记】
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 9894 Solved: 4561[Subm ...
- 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Rabin+Pollard_Rho)
注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex ...
- OI知识点|NOIP考点|省选考点|教程与学习笔记合集
点亮技能树行动-- 本篇blog按照分类将网上写的OI知识点归纳了一下,然后会附上蒟蒻我的学习笔记或者是我认为写的不错的专题博客qwqwqwq(好吧,其实已经咕咕咕了...) 基础算法 贪心 枚举 分 ...
随机推荐
- 新手对ASP.NET MVC的疑惑
习惯了多年的WEB FORM开发方式,突然转向MVC,一下子懵了,晕头转向,好多不习惯,好多不明白,直到现在也没弄明白,只好先记下来,在应用中一一求解. 主要集中在视图(View)这里. 1.@Htm ...
- 应用程序 /dev/rtc 编程 获取时间 2011-12-13 01:01:06【转】
本文转载自:http://blog.chinaunix.net/uid-16785183-id-3040310.html 分类: 原文地址:应用程序 /dev/rtc 编程 获取时间 作者:yuwei ...
- Android中关闭DatePicker、TimePicker、NumberPicker的可编辑模式
DatePicker.TimePicker.NumberPicker这三个控件在使用的过程中,用户点击数字会弹出键盘,有时候会造成布局被挤压不好看,也有其他的需求. 我看了网上很多文章的解决办法都无效 ...
- Karma和Jasmine自动化单元测试——本质上还是在要开一个浏览器来做测试
1. Karma的介绍 Karma是Testacular的新名字,在2012年google开源了Testacular,2013年Testacular改名为Karma.Karma是一个让人感到非常神秘的 ...
- hdu 1695(莫比乌斯反演)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- poj2594——最小路径覆盖
Description Have you ever read any book about treasure exploration? Have you ever see any film about ...
- [AtCoder3954]Painting Machines
https://www.zybuluo.com/ysner/note/1230961 题面 有\(n\)个物品和\(n-1\)台机器,第\(i\)台机器会为第\(i\)和\(i+1\)个物品染色.设有 ...
- [JSOI2016]独特的树叶
https://zybuluo.com/ysner/note/1177340 题面 有一颗大小为\(n\)的树\(A\),现加上一个节点并打乱编号,形成树\(B\),询问加上的节点最后编号是多少? \ ...
- EOJ 1501/UVa The Blocks Problem
Many areas of Computer Science use simple, abstract domains for both analytical and empirical studie ...
- E20170821-mk
Dimension n. 尺寸; [复] 面积,范围; [物] 量纲; [数] 次元,度,维;