联合权值

题目大意

给你一个图,有\(n-1\)条边,距离均为\(1\),每距离为\(2\)的两个点的联合权值为\(W_u \times W_v\),求联合权值的最大值和联合权值总和。

solution

70pts

这道题稍微看一下就想到可以枚举一个点,然后对于每个点所相连的点到另一个所相连的点的距离一定为\(2\),所以我们就可以暴力枚举这一个点,然后进行加和。这样我们就得到了70分的做法。

// 70pts
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
int n;
const int mod = 10007;
struct edge {
int next,to;
} e[400000];
int head[400001],tot,val[200001],maxn=-0x7fffffff,ans,fa[200001];
void add(int x,int y) {
e[++tot].next = head[x];
head[x] = tot;
e[tot].to = y;
}
void dfs_bgn(int x,int f) {
fa[x]=f;
for(int i=head[x]; i; i=e[i].next) {
int v=e[i].to;
if(v!=f)
dfs_bgn(v,x);
}
return ;
}
void dfs(int x) {
for(int i=head[x]; i; i=e[i].next) {
int v=e[i].to;
if(v!=fa[x]) {
int k=fa[x];
if(k!=0) {
ans+=((val[k]%mod)*(val[v]%mod))%mod;
ans%=mod;
ans+=((val[k]%mod)*(val[v]%mod))%mod;
ans%=mod;
maxn=max(maxn,val[k]*val[v]);
}
dfs(v);
}
}
for(int i=head[x]; i; i=e[i].next)
for(int j=head[x]; j; j=e[j].next) {
int k=e[i].to,v=e[j].to;
if(k!=v && k!=fa[x] && v!=fa[x]) {
ans+=((val[k]%mod)*(val[v]%mod))%mod;
ans%=mod;
maxn=max(maxn,val[k]*val[v]);
}
}
}
int main() {
scanf("%d",&n);
for(int i=1; i<n; i++) {
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
add(b,a);
}
for(int i=1; i<=n; i++)scanf("%d",&val[i]);
dfs_bgn(1,0);
dfs(1);
printf("%d %d",maxn,ans);
return 0;
}

100pts

因为现在没考试,所以思想比较懈怠,就没有相处100pts的做法。

100pts的做法就是加了一步小优化,将我的n方枚举转变为线性。

线性做法是这样的,枚举到一个点,那么它的一个相邻点必定会乘以其他的点,所以这就是一个乘法分配律。

既然这样,我们就好说了。我们求出每个点相邻点的总和,然后再根据乘法分配律对答案进行更新。

那么最大值怎么办呢?最大值的话可以仔细想想,因为最大值就是一个点所相连的最大乘以次大,所以我们再枚举这个点周边点的时候维护一下就行了。

//100pts
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
int n;
const long long mod = 10007;
struct edge {
int next,to;
} e[400000];
int head[400001],tot,fa[200001];
long long val[200001],maxn=-0x7fffffff,ans;
void add(int x,int y) {
e[++tot].next = head[x];
head[x] = tot;
e[tot].to = y;
}
void dfs_bgn(int x,int f) {
fa[x]=f;
for(int i=head[x]; i; i=e[i].next) {
int v=e[i].to;
if(v!=f)
dfs_bgn(v,x);
}
return;
}
void dfs(int x) {
long long max1=0,max2=0,sum=0;
for(int i=head[x]; i; i=e[i].next) {
int v=e[i].to;
if(v!=fa[x]) dfs(v);
if(max1<val[v])max2=max1,max1=val[v];
else if(max1==val[v])max2=max1;
else if(max1>val[v] && max2<val[v]) max2=val[v];
sum+=val[v];
}
maxn=max(maxn,max1*max2);
for(int i=head[x];i;i=e[i].next){
int v=e[i].to;
ans=(ans+(val[v]%mod)*(sum-val[v]%mod))%mod;
ans%=mod;
}
}
int main() {
scanf("%d",&n);
for(int i=1; i<n; i++) {
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
add(b,a);
}
for(int i=1; i<=n; i++)scanf("%lld",&val[i]),val[i]%=mod;
dfs_bgn(1,0);
dfs(1);
printf("%lld %lld",maxn,ans);
return 0;
}

luogu 1351 联合权值的更多相关文章

  1. luogu P1351 联合权值

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  2. [NOIp2014] luogu P1351 联合权值

    哎我博 4 了. 题目描述 无向连通图 GGG 有 nnn 个点,n−1n−1n−1 条边.点从 111 到 nnn 依次编号,编号为 iii 的点的权值为 WiW_iWi​,每条边的长度均为 111 ...

  3. Luogu P1351 联合权值 题解

    这是一个不错的树形结构的题,由于本蒟蒻不会推什么神奇的公式其实是懒得推...,所以很愉快的发现其实只需要两个点之间的关系为祖父和儿子.或者是兄弟即可. 然后问题就变得很简单了,只需要做一个正常的DFS ...

  4. 【luogu P1351 联合权值】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1351 做了些提高组的题,不得不说虽然NOIP考察的知识点虽然基本上都学过,但是做起题来还是需要动脑子的. 题 ...

  5. 洛谷 1351 联合权值——树形dp

    题目:https://www.luogu.org/problemnew/show/P1351 对拍了一下,才发现自己漏掉了那种拐弯的情况. #include<iostream> #incl ...

  6. Luogu 1351 NOIP 2014 联合权值(贪心,计数原理)

    Luogu 1351 NOIP 2014 联合权值(贪心,计数原理) Description 无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 Wi, ...

  7. [Luogu 1351] NOIP2014 联合权值

    [Luogu 1351] NOIP2014 联合权值 存图,对于每一个点 \(u\),遍历它的所有邻接点.以 \(u\) 为中转点的点对中,\((x,y)\) 的联合权值 \(w_x \cdot w_ ...

  8. 【NOIP2014提高组】联合权值

    https://www.luogu.org/problem/show?pid=1351 既然是一棵树,就先转化成有根树.有根树上距离为2的点对,路径可能长下面这样: 枚举路径上的中间点X. 第一种情况 ...

  9. 洛谷——P1351 联合权值

    https://www.luogu.org/problem/show?pid=1351 题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i , ...

随机推荐

  1. [BZOJ 3365] Distance Statistics

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=3365 [算法] 点分治 [代码] #include <algorithm> ...

  2. 什么是BOM头(字节顺序标记(ByteOrderMark))

    在utf-8编码文件中BOM在文件头部,占用三个字节,用来标示该文件属于utf-8编码,现在已经有很多软件识别bom头,但是还有些不能识别bom头,比如PHP就不能识别bom头,这也是用记事本编辑ut ...

  3. Java中的作用域有哪些

    在Java语言中,变量的类型主要有3种:成员变量.静态变量和局部变量 首先说静态变量跟局部变量 静态变量不依赖于特定的实例,而是被所有实例共享,也就是说,只要一个类被加载,JVM就会给类的静态变量分配 ...

  4. 了解和解决SQL SERVER阻塞问题(copy)

    http://support.microsoft.com/kb/224453 Summary In this article, the term "connection" refe ...

  5. web.config or app.config 中configSections配置节点

    以前还真没见过,今天看项目中有在用,简单写了个Demo,这样配置的好处就是可以自定义配置,更加模块化,直接上代码; 1.配置文件 由于我创建的是一个控制台项目,所以配置文件是App.Config:(这 ...

  6. C语言中以文本方式读写文件时换行符转换的注意事项

    我们知道在UNIX下是没有回车符(\r)的,只有换行符(\n),而C语言诞生于UNIX(Linux即面向开源的UNIX,Mac OS也是UNIX发展而来的,而Windows是从MS-DOS发展而来,与 ...

  7. linux 下vim中关于删除某段,某行,或者全部删除的命令

  8. 优动漫PAINT安装教程

    优动漫PAINT是一款漫画.插画.动画绘制软件.其功能可分别满足画师对于插画.漫画和动画创作的针对性需求,是一款非常好用易上手的动漫绘图软件,本文来看使用软件第一步,如何安装优动漫PAINT. 步骤一 ...

  9. Eclipse配置SVN的几种方法及使用详情(此文章对Myeclipse同样适用)

    一.在Eclipse里下载Subclipse插件 方法一:从Eclipse Marketplace里面下载 具体操作:打开Eclipse --> Help --> Eclipse Mark ...

  10. kernel zram feature

    what is zram? Zram wiki zram zram(也称为 zRAM,先前称为 compcache)是 Linux 内核的一项功能,可提供虚拟内存压缩.zram 通过在 RAM 内的压 ...