luogu 1351 联合权值
联合权值
题目大意
给你一个图,有\(n-1\)条边,距离均为\(1\),每距离为\(2\)的两个点的联合权值为\(W_u \times W_v\),求联合权值的最大值和联合权值总和。
solution
70pts
这道题稍微看一下就想到可以枚举一个点,然后对于每个点所相连的点到另一个所相连的点的距离一定为\(2\),所以我们就可以暴力枚举这一个点,然后进行加和。这样我们就得到了70分的做法。
// 70pts
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
int n;
const int mod = 10007;
struct edge {
int next,to;
} e[400000];
int head[400001],tot,val[200001],maxn=-0x7fffffff,ans,fa[200001];
void add(int x,int y) {
e[++tot].next = head[x];
head[x] = tot;
e[tot].to = y;
}
void dfs_bgn(int x,int f) {
fa[x]=f;
for(int i=head[x]; i; i=e[i].next) {
int v=e[i].to;
if(v!=f)
dfs_bgn(v,x);
}
return ;
}
void dfs(int x) {
for(int i=head[x]; i; i=e[i].next) {
int v=e[i].to;
if(v!=fa[x]) {
int k=fa[x];
if(k!=0) {
ans+=((val[k]%mod)*(val[v]%mod))%mod;
ans%=mod;
ans+=((val[k]%mod)*(val[v]%mod))%mod;
ans%=mod;
maxn=max(maxn,val[k]*val[v]);
}
dfs(v);
}
}
for(int i=head[x]; i; i=e[i].next)
for(int j=head[x]; j; j=e[j].next) {
int k=e[i].to,v=e[j].to;
if(k!=v && k!=fa[x] && v!=fa[x]) {
ans+=((val[k]%mod)*(val[v]%mod))%mod;
ans%=mod;
maxn=max(maxn,val[k]*val[v]);
}
}
}
int main() {
scanf("%d",&n);
for(int i=1; i<n; i++) {
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
add(b,a);
}
for(int i=1; i<=n; i++)scanf("%d",&val[i]);
dfs_bgn(1,0);
dfs(1);
printf("%d %d",maxn,ans);
return 0;
}
100pts
因为现在没考试,所以思想比较懈怠,就没有相处100pts的做法。
100pts的做法就是加了一步小优化,将我的n方枚举转变为线性。
线性做法是这样的,枚举到一个点,那么它的一个相邻点必定会乘以其他的点,所以这就是一个乘法分配律。
既然这样,我们就好说了。我们求出每个点相邻点的总和,然后再根据乘法分配律对答案进行更新。
那么最大值怎么办呢?最大值的话可以仔细想想,因为最大值就是一个点所相连的最大乘以次大,所以我们再枚举这个点周边点的时候维护一下就行了。
//100pts
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
int n;
const long long mod = 10007;
struct edge {
int next,to;
} e[400000];
int head[400001],tot,fa[200001];
long long val[200001],maxn=-0x7fffffff,ans;
void add(int x,int y) {
e[++tot].next = head[x];
head[x] = tot;
e[tot].to = y;
}
void dfs_bgn(int x,int f) {
fa[x]=f;
for(int i=head[x]; i; i=e[i].next) {
int v=e[i].to;
if(v!=f)
dfs_bgn(v,x);
}
return;
}
void dfs(int x) {
long long max1=0,max2=0,sum=0;
for(int i=head[x]; i; i=e[i].next) {
int v=e[i].to;
if(v!=fa[x]) dfs(v);
if(max1<val[v])max2=max1,max1=val[v];
else if(max1==val[v])max2=max1;
else if(max1>val[v] && max2<val[v]) max2=val[v];
sum+=val[v];
}
maxn=max(maxn,max1*max2);
for(int i=head[x];i;i=e[i].next){
int v=e[i].to;
ans=(ans+(val[v]%mod)*(sum-val[v]%mod))%mod;
ans%=mod;
}
}
int main() {
scanf("%d",&n);
for(int i=1; i<n; i++) {
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
add(b,a);
}
for(int i=1; i<=n; i++)scanf("%lld",&val[i]),val[i]%=mod;
dfs_bgn(1,0);
dfs(1);
printf("%lld %lld",maxn,ans);
return 0;
}
luogu 1351 联合权值的更多相关文章
- luogu P1351 联合权值
题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...
- [NOIp2014] luogu P1351 联合权值
哎我博 4 了. 题目描述 无向连通图 GGG 有 nnn 个点,n−1n−1n−1 条边.点从 111 到 nnn 依次编号,编号为 iii 的点的权值为 WiW_iWi,每条边的长度均为 111 ...
- Luogu P1351 联合权值 题解
这是一个不错的树形结构的题,由于本蒟蒻不会推什么神奇的公式其实是懒得推...,所以很愉快的发现其实只需要两个点之间的关系为祖父和儿子.或者是兄弟即可. 然后问题就变得很简单了,只需要做一个正常的DFS ...
- 【luogu P1351 联合权值】 题解
题目链接:https://www.luogu.org/problemnew/show/P1351 做了些提高组的题,不得不说虽然NOIP考察的知识点虽然基本上都学过,但是做起题来还是需要动脑子的. 题 ...
- 洛谷 1351 联合权值——树形dp
题目:https://www.luogu.org/problemnew/show/P1351 对拍了一下,才发现自己漏掉了那种拐弯的情况. #include<iostream> #incl ...
- Luogu 1351 NOIP 2014 联合权值(贪心,计数原理)
Luogu 1351 NOIP 2014 联合权值(贪心,计数原理) Description 无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 Wi, ...
- [Luogu 1351] NOIP2014 联合权值
[Luogu 1351] NOIP2014 联合权值 存图,对于每一个点 \(u\),遍历它的所有邻接点.以 \(u\) 为中转点的点对中,\((x,y)\) 的联合权值 \(w_x \cdot w_ ...
- 【NOIP2014提高组】联合权值
https://www.luogu.org/problem/show?pid=1351 既然是一棵树,就先转化成有根树.有根树上距离为2的点对,路径可能长下面这样: 枚举路径上的中间点X. 第一种情况 ...
- 洛谷——P1351 联合权值
https://www.luogu.org/problem/show?pid=1351 题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i , ...
随机推荐
- Oracle 常见的33个等待事件
一. 等待事件的相关知识: 1.1 等待事件主要可以分为两类,即空闲(IDLE)等待事件和非空闲(NON-IDLE)等待事件. 1). 空闲等待事件指Oracle正等待某种工作,在诊断和优化数据库的时 ...
- 迭代Iterator的用法
迭代→遍历: 一个标准化遍历各类容器里面的所有对象的方法类(典型的设计模式) 把访问逻辑从不同类型的集合类中抽象出来,从而避免向客户端暴露集合的内部结构 迭代(Iterator)与枚举(Enumera ...
- 利用bat批处理——实现数据库的自动备份和删除
之前见别人一直在玩批处理,最近公司也在用,就顺便学习下: 首先创建一个 txt文件 命名BackupDataBase 并修改后缀为.bat 编写两条命令: sqlcmd -S . -E -Q &qu ...
- Js正则表达式数字或者带小数点的数字
function chk() { var patrn = /^\d+(\.\d+)?$/; var result = true; $("input[type=text]").eac ...
- 软件测试中的fault,error,failure
问题:给定两段代码,设计fault,error,failure的测试用例. fault:即引起错误的原因,类似病因. error:类似疾病引起的内部结果. failure:类似疾病引起的症状. 代码1 ...
- sybase profile
# # Sybase Product Environment variables # SAP_JRE7_32="/opt/sybase/shared/SAPJRE-7_1_011_32BIT ...
- JS判断客户端是否是iOS或者Android或者ipad(三)
* * @function: 判断浏览器类型是否是Safari.Firefox.ie.chrome浏览器 * @return: true或false * */ function isSafa ...
- Pyhton学习——Day28
#上下文协议:文件操作时使用with执行# with open('a.txt','w',encoding='utf-8') as f1:# with语句,为了让一个对象兼容with语句,必须在这个对象 ...
- 一些特殊ACII码的用法 在控制台中覆盖显示、刷新显示和删除字符
很好奇怎么实现在控制台中不换行直接显示新的信息把旧的替换掉,于是找到了两个ACII码字符,他们可以帮助实现. 一个是‘\b’字符,这个字符是backspace,即删除上一个字符,于是可以清除以显示的旧 ...
- node——文件写入,文件读取
ru //实行文件操作 //文件写入 //1.加载文件操作,fs模块 var fs = require('fs'); //2.实现文件写入操作 var msg='Hello world'; //调用f ...