【poj1995】快速幂
题目大意
求a^b %p
1≤a,b,p≤10^9
思路
时间O(10^9)一定会爆T,采用数学方法+位运算,得到O(log b)的快速幂算法
代码
#include<cstdio>
#include<iostream>
#include<cctype>
#include<algorithm>
#define ll long long
using namespace std;
inline int read()
{
int ans=0,f=1;
char chr=getchar();
while(!isdigit(chr)) {if(chr='-') f=-1; chr=getchar();}
while(isdigit(chr)) {ans=ans*10+chr-'0'; chr=getchar();}
return ans*f;
}
ll T,p;
int n;
ll calc(ll a,ll b,ll c)//计算a^b%p
{
ll tans=1;//记录答案
while(b)
{
if(b&1) tans=tans*a%p;//如果是奇数,意味着这一处数位要取,更新ans;
a=a*a%p;//更新a;
b>>=1;//将b左移一位
}
return tans;
}
int main()
{
T=read();
while(T--)
{
ll ans=0;
p=read();
n=read();
for(int i=1;i<=n;i++)
{
ll a=read(),b=read();
ans=(ans+calc(a,b,p))%p;
}
printf("%d\n",ans);
}
return 0;
}
【poj1995】快速幂的更多相关文章
- POJ1995 Raising Modulo Numbers(快速幂)
POJ1995 Raising Modulo Numbers 计算(A1B1+A2B2+ ... +AHBH)mod M. 快速幂,套模板 /* * Created: 2016年03月30日 23时0 ...
- 《挑战程序设计竞赛》2.6 数学问题-快速幂运算 POJ1995
POJ3641 此题应归类为素数. POJ1995 http://poj.org/problem?id=1995 题意 求(A1^B1+A2^B2+ - +AH^BH)mod M. 思路 标准快速幂运 ...
- POJ1995(整数快速幂)
http://poj.org/problem?id=1995 题意:求(A1^B1 + A2^B2 + .....Ah^Bh)%M 直接快速幂,以前对快速幂了解不深刻,今天重新学了一遍so easy ...
- Powmod快速幂取模
快速幂取模算法详解 1.大数模幂运算的缺陷: 快速幂取模算法的引入是从大数的小数取模的朴素算法的局限性所提出的,在朴素的方法中我们计算一个数比如5^1003%31是非常消耗我们的计算资源的,在整个计算 ...
- 整数快速乘法/快速幂+矩阵快速幂+Strassen算法
快速幂算法可以说是ACM一类竞赛中必不可少,并且也是非常基础的一类算法,鉴于我一直学的比较零散,所以今天用这个帖子总结一下 快速乘法通常有两类应用:一.整数的运算,计算(a*b) mod c 二.矩 ...
- 【POJ - 1995】Raising Modulo Numbers(快速幂)
-->Raising Modulo Numbers Descriptions: 题目一大堆,真没什么用,大致题意 Z M H A1 B1 A2 B2 A3 B3 ......... AH ...
- 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)
题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...
- 51nod 算法马拉松18 B 非010串 矩阵快速幂
非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...
- hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)
题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3. ...
随机推荐
- Ansible 利用playbook批量部署mariadb
环境说一下 192.168.30.21 ansible 192.168.30.25 client1 192.168.30.26 client2 这里我的ansible环境已经部 ...
- 如何在Ubuntu16.04 中安装Linux, Nginx, MySQL, PHP (LEMP 栈)
介绍 LEMP 栈是用来开发动态网页和web 应用程序的一系列软件集合,LEMP描述的是Linux操作系统,Nginx web 服务器,以及后端数据存储MySQL/MariaDB数据库和服务器端动态脚 ...
- BZOJ 1602 USACO 2008 Oct. 牧场行走
[题解] 要求出树上两点间的距离,树上的边有边权,本来应该是个LCA. 看他数据小,Xjb水过去了...其实也算是LCA吧,一个O(n)的LCA... #include<cstdio> # ...
- JavaScript进阶----关于数字的方法,Math对象,日期对象,定时器,函数,for in
关于数字的方法: <!DOCTYPE html> <html lang="en"> <head> <meta charset=" ...
- Caffe 工程的一些编译错误以及解决方案
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/51371936 整理一下最近遇到caff ...
- hdu 3064
1:前n项和公式:1+2+3+...+n = n*(n+1)/2 2:前n项平方和公式:1^2+2^2+.........+n^2=n*(n+1)*(2n+1)/6 #include<stdio ...
- [bzoj1926][Sdoi2010]粟粟的书架_二分_主席树
粟粟的书架 bzoj-1926 Sdoi-2010 题目大意:题目链接 注释:略 想法:分成两个题 前面的我们可以二分,直接二分出来检验即可. 对于R=1的,相当一个数列,我们在上面建立主席树. 然后 ...
- Xmemcached使用之与Spring整合
转自:http://hi.baidu.com/tjbaso/item/22f3c32b062ebefb50fd87b8 1 简介Xmemcached是一个高性能的基于java nio的memcache ...
- 基于zookeeper和强一致性复制实现MySQL分布式数据库集群
http://qikan.cqvip.com/article/detail.aspx?id=667750898&from=zk_search
- python 执行环境
一些函数 执行其它非python程序 1 一些函数 callable callable()是一个布尔函数,确定一个对象是否可以通过函数操作符(())来调用.如果函数可调用便返回True,否则便是Fal ...