HUD——T 3836 Equivalent Sets
http://acm.hdu.edu.cn/showproblem.php?pid=3836
Time Limit: 12000/4000 MS (Java/Others) Memory Limit: 104857/104857 K (Java/Others)
Total Submission(s): 4802 Accepted Submission(s): 1725
You are to prove N sets are equivalent, using the method above: in each step you can prove a set X is a subset of another set Y, and there are also some sets that are already proven to be subsets of some other sets.
Now you want to know the minimum steps needed to get the problem proved.
Next M lines, each line contains two integers X, Y, means set X in a subset of set Y.
3 2
1 2
1 3
2
Case 2: First prove set 2 is a subset of set 1 and then prove set 3 is a subset of set 1.
#include <algorithm>
#include <cstring>
#include <cstdio> using namespace std; const int N(+);
const int M(+);
int n,m; int head[N],sumedge;
struct Edge
{
int v,next;
Edge(int v=,int next=):v(v),next(next){}
}edge[M];
inline void ins(int u,int v)
{
edge[++sumedge]=Edge(v,head[u]);
head[u]=sumedge;
} int tim,dfn[N],low[N];
int top,Stack[N],instack[N];
int sumcol,col[N];
void DFS(int now)
{
dfn[now]=low[now]=++tim;
Stack[++top]=now; instack[now]=;
for(int i=head[now];i;i=edge[i].next)
{
int v=edge[i].v;
if(!dfn[v]) DFS(v),low[now]=min(low[now],low[v]);
else if(instack[v]) low[now]=min(low[now],dfn[v]);
}
if(dfn[now]==low[now])
{
col[now]=++sumcol;
for(;Stack[top]!=now;top--)
{
col[Stack[top]]=sumcol;
instack[Stack[top]]=;
}
instack[now]=; top--;
}
} int ans,ans1,ans2,rd[N],cd[N];
inline void init()
{
top=ans=ans1=ans2=tim=sumcol=sumedge=;
memset(rd,,sizeof(rd));
memset(cd,,sizeof(cd));
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(head,,sizeof(head));
memset(Stack,,sizeof(Stack));
memset(instack,,sizeof(instack));
} int main()
{
for(;~scanf("%d%d",&n,&m);init())
{
for(int u,v,i=;i<=m;i++)
scanf("%d%d",&u,&v),ins(u,v);
for(int i=;i<=n;i++)
if(!dfn[i]) DFS(i);
for(int u=;u<=n;u++)
for(int i=head[u];i;i=edge[i].next)
{
int v=edge[i].v;
if(col[u]==col[v]) continue;
rd[col[v]]++; cd[col[u]]++;
}
for(int i=;i<=sumcol;i++)
{
if(!cd[i]) ans1++;
if(!rd[i]) ans2++;
}
ans=max(ans1,ans2);
if(sumcol==) ans=;
printf("%d\n",ans);
}
return ;
}
HUD——T 3836 Equivalent Sets的更多相关文章
- hdu 3836 Equivalent Sets
题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=3836 Equivalent Sets Description To prove two sets A ...
- [tarjan] hdu 3836 Equivalent Sets
主题链接: http://acm.hdu.edu.cn/showproblem.php? pid=3836 Equivalent Sets Time Limit: 12000/4000 MS (Jav ...
- hdoj 3836 Equivalent Sets【scc&&缩点】【求最少加多少条边使图强连通】
Equivalent Sets Time Limit: 12000/4000 MS (Java/Others) Memory Limit: 104857/104857 K (Java/Other ...
- hdu 3836 Equivalent Sets trajan缩点
Equivalent Sets Time Limit: 12000/4000 MS (Java/Others) Memory Limit: 104857/104857 K (Java/Other ...
- hdu 3836 Equivalent Sets(强连通分量--加边)
Equivalent Sets Time Limit: 12000/4000 MS (Java/Others) Memory Limit: 104857/104857 K (Java/Other ...
- hdu——3836 Equivalent Sets
Equivalent Sets Time Limit: 12000/4000 MS (Java/Others) Memory Limit: 104857/104857 K (Java/Other ...
- hdu 3836 Equivalent Sets(tarjan+缩点)
Problem Description To prove two sets A and B are equivalent, we can first prove A is a subset of B, ...
- hdu - 3836 Equivalent Sets(强连通)
http://acm.hdu.edu.cn/showproblem.php?pid=3836 判断至少需要加几条边才能使图变成强连通 把图缩点之后统计入度为0的点和出度为0的点,然后两者中的最大值就是 ...
- HDU - 3836 Equivalent Sets (强连通分量+DAG)
题目大意:给出N个点,M条边.要求你加入最少的边,使得这个图变成强连通分量 解题思路:先找出全部的强连通分量和桥,将强连通分量缩点.桥作为连线,就形成了DAG了 这题被坑了.用了G++交的,结果一直R ...
随机推荐
- NPashaP的二分图源码部分
源码链接:https://github.com/nelsonkuang/ant-admin/blob/master/src/utils/d3-viz.js 的二分图部分. 1.整体的级联结构 整个bp ...
- PostgreSQL指定用户可访问的数据库pg_hba.conf
进入指定目录: # cd /var/lib/pgsql/9.3/data/ 使用vi编辑pg_hba.conf文件 # vi pg_hba.conf 以上配置为所有IP及网关都允许访问,使用MD5认证 ...
- 对比学习sass和stylus的常用功能
在众多的css预处理器语言中,sass和stylus算是十分优秀的两个.本文主要针对两者的常用功能做个简单的对比分析.在对比中了解二者的差异,同时帮助大家更好的掌握这两种预处理语言.本文涉及到的sas ...
- [Python] Use a Python Generator to Crawl the Star Wars API
In this lesson, you will be introduced to Python generators. You will see how a generator can replac ...
- C++对象模型——效率有了,弹性呢(第七章)
7.4 效率有了,弹性呢 传统的C++对象模型提供有效率的运行期支持.这份效率,再加上与C之间的兼容性,造成了C++的广泛被接受度.然而,在某些领域方面,像是动态共享函数库(dynamicall ...
- libsvm 的使用
1. libsvm 支持的SVM模型 官网地址:LIBSVM – A Library for Support Vector Machines libsvm 支持的 SVM 模型如下(C:classif ...
- Java:网络传输
网络以字节码传输 String s = "我恨你"; //转成字节: byte[] brr = s.getBytes();//gbk //iE:utf-8 String s1 = ...
- mysql安装遇到的坑
安装mysql的三步: mysqld --initialize-insecure mysqld -install net start mysql 中间遇到了坑, 看这篇文章完美的解决了,记录一下 .以 ...
- Linux samba服务器安装调试。
samba 做为主要的windown 和 Linux 通讯的服务器之一. 1. 查看是否安装了smb服务. #rpm -ga|grep samba 或者 #service smb status ...
- 把书《CUDA By Example an Introduction to General Purpose GPU Programming》读薄
鉴于自己的毕设需要使用GPU CUDA这项技术,想找一本入门的教材,选择了Jason Sanders等所著的书<CUDA By Example an Introduction to Genera ...