Problem Description

The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those digits are summed
and the process is repeated. This is continued as long as necessary to obtain a single digit.



For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12. Since 12 is not a single digit, the process
must be repeated. Adding the 1 and the 2 yeilds 3, a single digit and also the digital root of 39.



The Eddy's easy problem is that : give you the n,want you to find the n^n's digital Roots.

Input

The input file will contain a list of positive integers n, one per line. The end of the input will be indicated by an integer value of zero. Notice:For each integer in the input n(n<10000).

Output

Output n^n's digital root on a separate line of the output.

Sample Input

2
4
0

Sample Output

4
4
#include<stdio.h>
#include<string.h>
int main()
{
int n;
while(~scanf("%d",&n),n)
{
int s=1;
for(int i=0;i<n;i++)
{
s=s*n%9; //事实上不难发现对9取余更简便。不解释为什么,仅仅能说这是一种规律 }
if(s==0)
printf("9\n");
else
printf("%d\n",s);<pre name="code" class="cpp">

}return 0;}

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
int sum_dig(int n)
{
int m,sum=0;
while(n)
{
m=n%10;
sum+=m;
n/=10;
}
return sum;
}
int main()
{
int n;
while(~scanf("%d",&n),n)
{
int s=1;
for(int i=0;i<n;i++)
{
s=n*sum_dig(s);
}
while(s>9)
{
s=sum_dig(s);
}
printf("%d\n",s);
}
return 0;
}

HDoj-1163- Digital Roots的更多相关文章

  1. HDOJ 1163 Eddy's digital Roots(九余数定理的应用)

    Problem Description The digital root of a positive integer is found by summing the digits of the int ...

  2. HDU 1163 Eddy's digital Roots

    Eddy's digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  3. Digital Roots 1013

    Digital Roots 时间限制(普通/Java):1000MS/3000MS          运行内存限制:65536KByte总提交:456            测试通过:162 描述 T ...

  4. Eddy's digital Roots

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission( ...

  5. Digital Roots 分类: HDU 2015-06-19 22:56 13人阅读 评论(0) 收藏

    Digital Roots Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...

  6. ACM——Digital Roots

    http://acm.njupt.edu.cn/acmhome/problemdetail.do?&method=showdetail&id=1028 Digital Roots 时间 ...

  7. Eddy's digital Roots(九余数定理)

    Eddy's digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  8. HDU1163 Eddy&#39;s digital Roots【九剩余定理】

    Eddy's digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  9. HDU 1013 Digital Roots(字符串)

    Digital Roots Problem Description The digital root of a positive integer is found by summing the dig ...

  10. HDU 1013.Digital Roots【模拟或数论】【8月16】

    Digital Roots Problem Description The digital root of a positive integer is found by summing the dig ...

随机推荐

  1. Flask的快速入门详细笔记

    Flask的框架结构对应关系及理解 1.简介 简单介绍下Flask是一个轻量级的web前端框架,不像django那样本身具备一套完整的页面体系,轻量级说明了完全可以自定义,从功能逻辑到业务处理,都可以 ...

  2. 【习题 8-11 UVA - 1615】Highway

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 每个村庄都有一个范围[li..ri] 只要在这个范围内放点都可以"支配"这个村庄. 则问题就等价于线段上有n个区 ...

  3. WPF通用管理框架 项目客户端基础结构介绍

    介绍 首先, 粗糙的展示一下目前的结构设计理念, 因为这几天一直在忙于工作, 所以跟进有些缓慢, 整体的设计是支持多种服务模式.目前只针对MSSQL做数据库接口, ORM选型则用的是微软的EF(PS: ...

  4. Spring AOP那些学术概念—通知、增强处理连接点(JoinPoint)切面(Aspect)(转)

    1.我所知道的AOP 初看起来,上来就是一大堆的术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等.一下让你不知所措,心想着:管不得很多人都和我说AOP多难多难.当我看进去以后, ...

  5. 将 php 转换/编译为 EXE

    将 php 转换/编译为 EXE 本文仅仅是将原文用谷歌作了翻译,原文来源于 http://stackoverflow.com 资料来源  http://stackoverflow.com/quest ...

  6. [LuoguP4892]GodFly的寻宝之旅 状压DP

    链接 基础状压DP,预处理出sum,按照题意模拟即可 复杂度 \(O(n^22^n)\) #include<bits/stdc++.h> #define REP(i,a,b) for(in ...

  7. thinkphp多层volist实现多表查询

    thinkphp多层volist实现多表查询 一.总结 二.截图 三.代码 1.控制器 2.视图

  8. [NOI2008]假面舞会(DFS)

    Description 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢的面具.每个面具都有一个编号,主办 ...

  9. Maven学习总结(14)——Maven 多模块项目如何分工?

    一.开场白 使用Maven有段时间了,只能感慨真是个好东西,让我从传统模式体会到了严谨.规范.敏捷.方便的特性. 如果你懂Maven或许看过Juven翻译的<Maven权威指南>: 发个牢 ...

  10. 79.cgi硬盘查询个人信息

    运行截图: 把cgi编码转为char*类型 //把cgi编码转为char*类型 char* change(char *str) { //分配内存 ); //x是tempstr的下标,y是str的下标 ...