HDU 3698 Let the light guide us
Let the light guide us
This problem will be judged on HDU. Original ID: 3698
64-bit integer IO format: %I64d Java class name: Main
Recently an accident destroyed the eternal tranquility. Some greedy fools tried using powerful bombs to find the hidden treasure. Of course they failed and such behavior enraged those spirits--the consequence is that all the human villages nearby are haunted by ghosts.
In order to stop those ghosts as soon as possible, Panda the Archmage and Facer the great architect figure out a nice plan. Since the plain can be represented as grids of N rows and M columns, the plan is that we choose ONLY ONE cell in EACH ROW to build a magic tower so that each tower can use holy light to protect the entire ROW, and finally the whole plain can be covered and all spirits can rest in peace again. It will cost different time to build up a magic tower in different cells. The target is to minimize the total time of building all N towers, one in each row.
“Ah, we might have some difficulties.” said Panda, “In order to control the towers correctly, we must guarantee that every two towers in two consecutive rows share a common magic area.”
“What?”
“Specifically, if we build a tower in cell (i,j) and another tower in cell (i+1,k), then we shall have |j-k|≤f(i,j)+f(i+1,k). Here, f(i,j) means the scale of magic flow in cell (i,j).”
“How?”
“Ur, I forgot that you cannot sense the magic power. Here is a map which shows the scale of magic flows in each cell. And remember that the constraint holds for every two consecutive rows.”
“Understood.”
“Excellent! Let’s get started!”
Would you mind helping them?
Input
Each test case starts with a line containing 2 integers N and M (2<=N<=100,1<=M<=5000), representing that the plain consists N rows and M columns.
The following N lines contain M integers each, forming a matrix T of N×M. The j-th element in row i (Tij) represents the time cost of building a magic tower in cell (i, j). (0<=Tij<=100000)
The following N lines contain M integers each, forming a matrix F of N×M. The j-th element in row i (Fij) represents the scale of magic flows in cell (i, j). (0<=Fij<=100000)
For each test case, there is always a solution satisfying the constraints.
The input ends with a test case of N=0 and M=0.
Output
Sample Input
3 5
9 5 3 8 7
8 2 6 8 9
1 9 7 8 6
0 1 0 1 2
1 0 2 1 1
0 2 1 0 2
0 0
Sample Output
10
Source
#include <bits/stdc++.h>
using namespace std;
const int N = ;
const int M = ;
const int INF = 0x3f3f3f3f;
struct node {
int minv,lazy;
} tree[M<<];
int T[N][M],F[N][M],dp[N][M];
void build(int L,int R,int v) {
tree[v].lazy = INF;
tree[v].minv = INF;
if(L == R) return;
int mid = (L + R)>>;
build(L,mid,v<<);
build(mid+,R,v<<|);
}
inline void pushdown(int v) {
if(tree[v].lazy < INF) {
tree[v<<].lazy = min(tree[v<<].lazy,tree[v].lazy);
tree[v<<].minv = min(tree[v<<].minv,tree[v<<].lazy);
tree[v<<|].lazy = min(tree[v<<|].lazy,tree[v].lazy);
tree[v<<|].minv = min(tree[v<<|].minv,tree[v<<|].lazy);
tree[v].lazy = INF;
}
}
inline void pushup(int v) {
tree[v].minv = min(tree[v<<].minv,tree[v<<|].minv);
}
void update(int L,int R,int lt,int rt,int val,int v) {
if(lt <= L && rt >= R) {
tree[v].lazy = min(tree[v].lazy,val);
tree[v].minv = min(tree[v].lazy,tree[v].minv);
return;
}
pushdown(v);
int mid = (L + R)>>;
if(lt <= mid) update(L,mid,lt,rt,val,v<<);
if(rt > mid) update(mid+,R,lt,rt,val,v<<|);
pushup(v);
}
int query(int L,int R,int lt,int rt,int v) {
if(lt <= L && rt >= R) return tree[v].minv;
pushdown(v);
int mid = (L + R)>>,ret = INF;
if(lt <= mid) ret = query(L,mid,lt,rt,v<<);
if(rt > mid) ret = min(ret,query(mid+,R,lt,rt,v<<|));
pushup(v);
return ret;
}
int main() {
int n,m;
while(scanf("%d%d",&n,&m),n||m) {
for(int i = ; i <= n; ++i)
for(int j = ; j <= m; ++j)
scanf("%d",T[i] + j);
for(int i = ; i <= n; ++i)
for(int j = ; j <= m; ++j)
scanf("%d",F[i] + j);
for(int i = ; i <= m; ++i) dp[][i] = T[][i];
for(int i = ; i <= n; ++i) {
build(,m,);
for(int j = ; j <= m; ++j)
update(,m,max(,j - F[i-][j]),min(j + F[i-][j],m),dp[i-][j],);
for(int j = ; j <= m; ++j) {
int tmp = query(,m,max(,j - F[i][j]),min(m,j + F[i][j]),);
dp[i][j] = min(INF,tmp + T[i][j]);
}
}
int ret = INF;
for(int i = ; i <= m; ++i)
ret = min(ret,dp[n][i]);
printf("%d\n",ret);
}
return ;
}
HDU 3698 Let the light guide us的更多相关文章
- 题解 HDU 3698 Let the light guide us Dp + 线段树优化
http://acm.hdu.edu.cn/showproblem.php?pid=3698 Let the light guide us Time Limit: 5000/2000 MS (Java ...
- hdu 3698 Let the light guide us(线段树优化&简单DP)
Let the light guide us Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 62768/32768 K (Java/O ...
- HDU 3698 Let the light guide us(DP+线段树)(2010 Asia Fuzhou Regional Contest)
Description Plain of despair was once an ancient battlefield where those brave spirits had rested in ...
- hdu3698 Let the light guide us dp+线段树优化
http://acm.hdu.edu.cn/showproblem.php?pid=3698 Let the light guide us Time Limit: 5000/2000 MS (Java ...
- hdu 3698 UVA1490 Let the light guide us 线段树优化DP
题目链接 and 题目大意 hdu3698 但是 hdu的数据比较弱,所以在这luogu提交吧UVA1490 Let the light guide us 有一个\(n*m\)的平原,要求每行选一个点 ...
- HDU 2857 Mirror and Light
/* hdu 2857 Mirror and Light 计算几何 镜面反射 */ #include<stdio.h> #include<string.h> #include& ...
- hdu 2857:Mirror and Light(计算几何,点关于直线的对称点,求两线段交点坐标)
Mirror and Light Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 4276-The Ghost Blows Light(树状背包)
题意: n个房间,每个有一定的钱,一个房间到另一个房间花费一定的时间,给你房间连接树,求在t时间内到达房间m能得到的最大钱数(从房间1(根)出发) 分析: 该题关键是最后要到达m,没有这个条件,就是基 ...
- HDU 3698 DP+线段树
给出N*M矩阵.每一个点建立灯塔有花费.每一个点的灯塔有连接范围,求每一行都建立一个灯塔的最小花费,要求每相邻两行的灯塔能够互相连接.满足 |j-k|≤f(i,j)+f(i+1,k) DP思路,dp[ ...
随机推荐
- ios开发之Swift新手入门
1.关于swift和调试,swift在ios7.0才支持,ios8.3系统的真机必需要xcode6.3才干调试.安装xcode6.3需要os x 10.10以上 2.应用程序由Main.storybo ...
- 2016.04.25,英语,《Vocabulary Builder》Unit 18
capit, from the Latin word for 'head', caput ['keɪpət] n.头,首 , turns up in some pretty important pla ...
- C C++每个头文件的功能说
C/C++每个头文件的功能说明 传统 C++ #include <assert.h> //设定插入点 #include <ctype.h> //字符处理 #include &l ...
- 坚向的ViewPager,上下滑动的组件,android上下滑动 VerticalPager
package com.zhulin.android.atools; import android.content.Context; import android.util.AttributeSet; ...
- 解决xftp失去链接需要重新链接问题。
XFTP 失去连接需要重新连接 打开 Xftp 主程序. 在顶部菜单[文件] – [属性], 打开[默认会话属性]窗口,点击[选项],在连接部分选择勾选"发送保持活动状态消息(s)" ...
- 对象设计解耦的方法IOC和DI
耦合关系不仅会出现在对象与对象之间,也会出现在软件系统的各模块之间,以及软件系统和硬件系统之间.如何降低系统之间.模块之间和对象之间的耦合度,是软件工程永远追求的目标之一.为了解决对象之间的耦合度过高 ...
- discuz “欣” “衡” 用户不能注册 bug修改
discuz “欣” “衡” 用户不能注册 原因是 discuz 有这样一段代码 function check_username($username) { $guestexp = '\xA1\xA1| ...
- Pop3协议详解
POP3全称为Post Office Protocol version3,即邮局协议第3版.它被用户代理用来邮件服务器取得邮件.POP3采用的也是C/S通信 模型 用户从邮件服务器上接收邮件的典型 ...
- .net中的母版页中使用FindControl的使用
前几天,遇到一个字段比较多的用户填写的页面(数据库表中就将近100个字段),怎么讲这些input的标签的值,保存数据库了?(使用的是母版页下面的aspx,不包括前段获取input的值,传给后台) 作为 ...
- C# DataTable常用方法总结
https://blog.csdn.net/wangzhen209/article/details/51743118