Scala: Types of a higher kind
One of the more powerful features Scala has is the ability to generically abstract across things that take type parameters. This feature is known as Higher Kinded Types (HKT).
This feature allows us to write a library that works with a much wider array of classes, whereas without the feature you are condemned to bespoke and error ridden code duplication for each class that may want the functionality.
Type constructors
Essentially what HKT gives us is the ability to generalize across type constructors – where a type constructor is anything that has a type parameter. For instance List[_]* is not a type, the underscore is a hole into which another type may be plugged, constructing a complete type. List[String] and List[Int] being examples of complete (or distinct) types.
Kinds
Now that we have a type constructor we can think of several different kinds of them, classified by how many type parameters they take. The simplest – like List[_] – that take a single param have the kind:
(* -> *)
This says: given one type, produce another. For instance, given String produce the type List[String].
Something that takes two parameters, say Map[_, _], or Function1[_, _] has the kind:
(* -> * -> *)
This says: given one type, then another, produce the final type. For instance given the key type Int and the value type String produce the type Map[Int, String].
Furthermore, you can have kinds that are themselves parameterized by higher kinded types. So, something could not only take a type, but take something that itself takes type parameters. An example would be the covariant functor: Functor[F[_]], it has the kind:
((* -> *) -> *)
This says: given a simple higher kinded type, produce the final type. For instance given a type constructor like List produce the final type Functor[List].
Utility
Say we have some standard pattern for our data-structures where we want to be able to consistently apply an operation of the same shape. Functors are a nice example, the covariant functor allows us to take a box holding things of type A, and a function of A => B and get back a box holding things of type B.
In Java, there is no way to specify that these things share a common interface, or that we simply want transformable boxes. We need to either make this static eg. Guava’s Listsand Iterables, or bespoke on the interface, eg: fugue’s Option or atlassian-util-concurrent’s Promise. There is simply no way to unify these methods on either some super interface or to specify that you have – or require – a “mappable/transformable” box.
With HKT I can represent the covariant functor described above as:
[cc lang=’scala’ ]
trait Functor[F[_]] {
def map[A, B](fa: F[A])(f: A => B): F[B]
}
// implement for java’s List
// note that the presence of mutation in the Java collections
// breaks the Functor laws
import java.util.{ List => JList }
implicit object JavaListFunctor extends Functor[JList] {
import collection.JavaConverters._
def map[A, B](fa: JList[A])(f: A => B): JList[B] =
(for (a B): Box2[B] =
Box2(f(b.a1), f(b.a2))
}
// and use it**
def describe[A, F[_]: Functor](fa: F[A]) =
implicitly[Functor[F]].map(fa)(a => a.toString)
case class Holder(i: Int)
val jlist: JList[Holder] = {
val l = new java.util.ArrayList[Holder]()
l add Holder(1); l add Holder(2); l add Holder(3)
l
}
val list = describe(jlist) // list: java.util.List[String] = [Holder(1), Holder(2), Holder(3)]
val box2 = describe(Box2(Holder(4), Holder(5)) // box: Box2[String] = Box2(Holder(4),Holder(5))
[/cc]
So, we have a describe function that works for any type that we can map over!
We could also use this with a traditional subtyping approach to have our boxes implement the map method directly with the appropriate signature. This is a little more convoluted, but still possible:
[cc lang=’scala’]
/**
* note we need a recursive definition of F as a subtype of Functor
* because we need to refer to it in the return type of map(…)
*/
trait Functor[A, F[_] B): F[B]
}
case class Box[A](a: A) extends Functor[A, Box] {
def map[B](f: A => B) =
Box(f(a))
}
def describe[A, F[A] a.toString)
val box = describe(Box(Holder(6))) // box: Box[String] = Box(Holder(6))
[/cc]
As a bonus, this last example quite nicely shows how subtype polymorphism is strictly less powerful and also more complicated (both syntactically and semantically) than ad-hoc polymorphism via type-classes.
Postscript
These techniques can lead to some very general and powerful libraries, such as scalaz, spire and shapeless. These libraries may take some getting used to, and as many of these generalizations are inspired by the mother of all generalizations – mathematics – they have names that need learning (like Monad).
However, the techniques are useful without needing to use scalaz. HKT is important for creating type-classes, and creating your own type-classes to encapsulate things like JSON encoding may be of value to your project. There are many ways this can be used within Scala.
If you’re interested in reading more, here’s the original paper for Scala. Among other things, it contains the following very useful graphic:
Also note that the Scala 2.11 REPL is getting a :kind command although its output is a little more convoluted due to the presence of variance annotations on type parameters.
* Strictly speaking, in Scala List[_] is actually an existential type. For the purposes of this post I am using the [_] notation to show the existence of type parameters. Thanks to Stephen Compall for pointing this out.
** An alternate syntax for a context-bound is an explicit implicit block:
[cc lang=’scala’]
def describe2[A, F[_]](fa: F[A])(implicit functor: Functor[F]) =
functor.map(fa) { _.toString }
[/cc]
https://www.atlassian.com/blog/archives/scala-types-of-a-higher-kind
Scala: Types of a higher kind的更多相关文章
- Scala Types 2
存在类型 形式: forSome { type ... } 或 forSome { val ... } 主要为了兼容 Java 的通配符 示例 Array[_] // 等价于 Array[T] for ...
- Scala Types 1
在 Scala 中所有值都有一种对应的类型 单例类型 形式:value.type,返回类型 value / null 场景1:链式API调用时的类型指定 class Super { def m1(t: ...
- Beginning Scala study note(8) Scala Type System
1. Unified Type System Scala has a unified type system, enclosed by the type Any at the top of the h ...
- scala速成记录1
选择 Learning Scala这本书,两百多页,足够薄. 安装 http://www.scala-lang.org/ 下载Binary的版本.bin里边有所有操作系统下运行的可以运行的交互式s ...
- Scala 中的函数式编程基础(二)
主要来自 Scala 语言发明人 Martin Odersky 教授的 Coursera 课程 <Functional Programming Principles in Scala>. ...
- geotrellis使用(十九)spray-json框架介绍
Geotrellis系列文章链接地址http://www.cnblogs.com/shoufengwei/p/5619419.html 目录 前言 spray-json简介 spray-json使用 ...
- 论文笔记之:Visual Tracking with Fully Convolutional Networks
论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015 CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...
- Akka(33): Http:Marshalling,to Json
Akka-http是一项系统集成工具.这主要依赖系统之间的数据交换功能.因为程序内数据表达形式与网上传输的数据格式是不相同的,所以需要对程序高级结构化的数据进行转换(marshalling or se ...
- 【原创】大叔问题定位分享(11)Spark中对大表子查询加limit为什么会报Broadcast超时错误
当两个表需要join时,如果一个是大表,一个是小表,正常的map-reduce流程需要shuffle,这会导致大表数据在节点间网络传输,常见的优化方式是将小表读到内存中并广播到大表处理,避免shuff ...
随机推荐
- 【codeforces 767D】Cartons of milk
[题目链接]:http://codeforces.com/problemset/problem/767/D [题意] 每个牛奶都有最晚可以喝的时间; 每天喝K瓶牛奶; 你有n瓶牛奶->已知每个牛 ...
- Html学习总结(2)——Html页面head标签元素的意义和应用场景
相信在html5之前,很少人会关注html页面上head里标签元素的定义和应用场景,可能记得住的只有"title"."keyword"和"descri ...
- Java POI Excel 导入导出
这个东西很容易懂,不是特别难,难就难在一些复杂的计算和Excel格式的调整上. 近期写了一个小列子,放上来便于以后使用. POI.jar下载地址:http://mirror.bit.edu.cn/ap ...
- kafka监控工具kafka-manager
1.几个kafka监控工具 Kafka Web Console:监控功能较为全面,可以预览消息,监控Offset.Lag等信息,但存在bug,不建议在生产环境中使用. Kafka Manager:偏向 ...
- 清北学堂模拟赛d4t1 a
分析:大模拟,没什么好说的.我在考场上犯了一个超级低级的错误:while (scanf("%s",s + 1)),导致了死循环,血的教训啊,以后要记住了. /* 1.没有发生改变, ...
- HDU - 3556 - Continued Fraction
先上题目: Continued Fraction Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/65536 K (Jav ...
- mybatis sql语句#{}和${}区别联系
1.说白了就是,#{}用于引用字符变量,如varchar,string.因为sql语句执行过程中要给string varchar加‘’来执行. 2.${}用来引用int型等不需要添加单引号的值 3.具 ...
- PHP发展的现状和前景
本人小菜鸟一仅仅,为了自我学习和交流PHP(jquery,linux,lamp,shell,javascript,server)等一系列的知识.小菜鸟创建了一个群. 希望光临本博客的人能够进来交流.寻 ...
- ZendFramework2学习笔记 表单过滤、表单验证
ZF2有非常多内建的Filter和Validator组件,能够方便地对表单数据进行处理. Filter的作用是过滤表单数据.比如,去除一些空格,替换一些敏感词等. Validator的作用是检验表单数 ...
- 【译文】利用STAN做贝叶斯回归分析:Part 2 非正态回归
[译文]利用STAN做贝叶斯回归分析:Part 2 非正态回归 作者 Lionel Hertzogn 前一篇文章已经介绍了怎样在R中调用STAN对正态数据进行贝叶斯回归.本文则将利用三个样例来演示怎样 ...