我一开始想的是前i个区间的最大值

显然对于当前的区间,有不选和选两种情况

如果不选的话,就继承f[i-1]

如果选的话,找离当前区间最近的区间取最优

f[i] = max(f[i-1, f[j] + a[i].v()) j为i前面区间中能取得离i最近的区间

那么显然这里涉及到f[i]的时候取的最后一个区间是什么,才能比较

那么就要额外开一个last数组来记录

最后输出f[n]

这样写很麻烦,但是我还是强行写出然后还AC了

#include<cstdio>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std; const int MAXN = 1123;
int f[MAXN], last[MAXN], n;
struct node
{
int l, r;
int v() { return r - l + 1; }
bool operator < (const node& rhs) const
{
return r < rhs.r || (r == rhs.r && l < rhs.l);
}
}a[MAXN]; int main()
{
scanf("%d", &n);
REP(i, 1, n + 1) scanf("%d%d", &a[i].l, &a[i].r);
sort(a + 1, a + n + 1); f[1] = a[1].v();
last[1] = a[1].r;
REP(i, 2, n + 1)
{
if(a[i].v() > f[i-1])
{
f[i] = a[i].v();
last[i] = a[i].r;
}
else
{ f[i] = f[i-1];
last[i] = last[i-1];
}
for(int j = i - 1; j >= 1; j--)
if(last[j] < a[i].l)
{
if(f[i] < f[j] + a[i].v())
{
f[i] = f[j] + a[i].v();
last[i] = a[i].r;
}
break;
}
}
printf("%d\n", f[n]); return 0;
}

然后我就突然想到

如果我们换一下状态,设f[i]为以i为结尾的区间的最大值,也就是说i区间必须要取

那么这个时候岂不是f[i]的最后一个区间就是a[i],不就可以省去一个last数组了吗

同时答案不是f[n],而是f数组里面的最大值,因为答案不一定以n为结尾。

然后就写了,代码大大简化,爽!

所以有时候还是要想一个合适的状态,可以大大简化程序和思维量

最后其实按照题目可以设置数据n=1,这个时候我的程序会输出0,会错。

但是数据里面没有这个坑……有的话特判一下就好了

#include<cstdio>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std; const int MAXN = 1123;
int f[MAXN], n;
struct node
{
int l, r;
int v() { return r - l + 1; }
bool operator < (const node& rhs) const
{
return r < rhs.r || (r == rhs.r && l < rhs.l); //对于这道题而言,按照左端
} //点和右端点排序都是对的
}a[MAXN]; int main()
{
scanf("%d", &n);
REP(i, 1, n + 1) scanf("%d%d", &a[i].l, &a[i].r);
sort(a + 1, a + n + 1); int ans = 0;
REP(i, 1, n + 1)
{
f[i] = a[i].v(); //这句话不能省,当前区间先取了再说
REP(j, 1, i)
if(a[j].r < a[i].l)
f[i] = max(f[i], f[j] + a[i].v());
ans = max(ans, f[i]);
}
printf("%d\n", ans); return 0;
}

caioj 1078 动态规划入门(非常规DP2:不重叠线段)(状态定义问题)的更多相关文章

  1. caioj 1080 动态规划入门(非常规DP4:乘电梯)(dp数组更新其他量)

    我一开始是这么想的 注意这道题数组下标是从大到小推,不是一般的从小到大推 f[i]表示从最高层h到第i层所花的最短时间,答案为f[1] 那么显然 f[i] = f[j] + wait(j) + (j ...

  2. caioj 1086 动态规划入门(非常规DP10:进攻策略)

    一开始看到题目感觉很难 然后看到题解感觉这题贼简单,我好像想复杂了 就算出每一行最少的资源(完全背包+二分)然后就枚举就好了. #include<cstdio> #include<a ...

  3. caioj 1087 动态规划入门(非常规DP11:潜水员)(二维背包)

    这道题的难点在于价值可以多. 这道题我一开始用的是前面的状态推现在的状态 实现比较麻烦,因为价值可以多,所以就设最大价值 为题目给的最大价值乘以10 #include<cstdio> #i ...

  4. 洛谷P1280 && caioj 1085 动态规划入门(非常规DP9:尼克的任务)

    这道题我一直按照往常的思路想 f[i]为前i个任务的最大空暇时间 然后想不出来怎么做-- 后来看了题解 发现这里设的状态是时间,不是任务 自己思维还是太局限了,题做得太少. 很多网上题解都反着做,那么 ...

  5. caioj 1084 动态规划入门(非常规DP8:任务安排)(取消后效性)

    这道题的难点在于,前面分组的时间会影响到后面的结果 也就是有后效性,这样是不能用dp的 所以我们要想办法取消后效性 那么,我们就可以把影响加上去,也就是当前这一组加上了s 那么就把s对后面的影响全部加 ...

  6. caioj 1083 动态规划入门(非常规DP7:零件分组)(LIS)

    这道题题目给的顺序不是固定的 所以一开始要自己排序,按照w来排序 后来只要看l就可以了 然后求最长下降子序列即可(根据那个神奇的定理,LIS模板里有提到) #include<cstdio> ...

  7. caioj 1082 动态规划入门(非常规DP6:火车票)

    f[i]表示从起点到第i个车站的最小费用 f[i] = min(f[j] + dist(i, j)), j < i 动规中设置起点为0,其他为正无穷 (貌似不用开long long也可以) #i ...

  8. caioj 1081 动态规划入门(非常规DP5:观光游览)

    这道题和前面的分组的题有点像 就是枚举最后一组的长度. 然后组数可以在第一层循环也可以在第二层循环 我自己的话就统一一下在第一层循环吧 然后这道题题意我一直没理解清楚,浪费了很多时间,写复杂了 同时初 ...

  9. caioj 1079 动态规划入门(非常规DP3:钓鱼)(动规中的坑)

    这道题写了我好久, 交上去90分,就是死活AC不了 后来发现我写的程序有根本性的错误,90分只是数据弱 #include<cstdio> #include<algorithm> ...

随机推荐

  1. 获取xml字符串中的属性值

    pagexml = @"<?xml version='1.0' encoding='utf-8'?> <DATAPACKET Version='2.0'> <M ...

  2. (转载)JS与WebView交互存在的一些问题

    JS与WebView交互存在的一些问题 作者 隔壁的李小宝 关注 2015.06.09 19:30 字数 2896 阅读 11117评论 3喜欢 35 一.背景概述 2013年Android平台暴露出 ...

  3. 51nod-1134 最长递增子序列,用线段树将N^2的dp降到NlogN

    题目链接 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10. Input 第1行 ...

  4. windows下mysql解压版安装及centos下mysql root密码忘记

    windows安装 1. 下载zip版的解压后将bin添加到path. 2. 修改解压目录D:\mysql\mysql-5.7.12-winx64下的my.ini,设置路径: 还要添加 [client ...

  5. windows py-faster-rcnn配置

    [原创帖!转载请注明] windows faster-rcnn安装一直会出现各种错误,本人在实验室电脑成功安装后,在自己电脑上同样的安装步骤也成功.所以做个总结,希望对大家有帮助. 一:安装环境 1. ...

  6. CentOS7-1810 系统DNS服务器BIND软件配置说明

    DNS的出现的历史 网络出现的早期是使用IP地址通讯的,那时就几台主机通讯.但是随着接入网络主机的增多,这种数字标识的地址非常不便于记忆,UNIX上就出现了建立一个叫做hosts的文件(Linux和W ...

  7. 关于.net core 在docker中监听地址设置踩坑记

    1.今天在做docker容器的时候发现如果将.net core 内部监听地址设置为localhost:8888. 2.在docker build -p 6444:8888 运行容器后,外部通过6444 ...

  8. Windows 10用户可以快速移除U盘

    新浪科技讯,北京时间 4 月 9 日上午消息,据美国科技媒体 The Verge 报道,微软再次证实,从 1809 版本的 Windows 10 开始,插入新闪存盘时“快速移除”(quick remo ...

  9. Python: 自定义类对象序列化为Json串

    之前已经实现了Python: Json串反序列化为自定义类对象,这次来实现了Json的序列化. 测试代码和结果如下: import Json.JsonTool class Score: math = ...

  10. BNUOJ 34990 Justice String

    Justice String Time Limit: 2000ms Memory Limit: 65536KB 64-bit integer IO format: %lld      Java cla ...