【2017 Multi-University Training Contest - Team 7】Hard challenge
【Link】:http://acm.hdu.edu.cn/showproblem.php?pid=6127
【Description】
平面上有n个点,每个点有一个价值,每两个点之间都有一条线段,定义线段的值为两个点价值的乘积,现在让你找一条过原点的直线(直线不经过任何一个节点),将这条直线所经过的所有线段的值求和,问最大的和是多少.
【Solution】
假设有一条线把x轴上方和x轴下方的点分开了;
这样这条线的答案就为(val上1+val上2+…+val上n)*(val下1+val下2+…+val下n);
把上边的点的权值加起来,下边的点的权值也加起来.然后做下乘法就好.
之后,我们只要一点一点地逆时针旋转这条直线就好了;
每次遇到的第一个点,就改变上半部分删掉它之后权值的改变量;
在所有里面取最大值即可;
在转的时候,不管是直线的哪一个地方,只要遇到了一个点就停下来;
然后计算改变量.
如果是在x轴的下方的点的话,就是从直线的下方变成上方.
如果是在x轴的上方…
遇到的是哪一点并不好判断!
于是,我们考虑把x轴下方的点按原点对称到上方来.
(记录它原来是下方的);
这样,我们只要按照角升序排一下.
然后顺序处理,就能知道下一个会遇到的点是哪一个点了.
因为不存在两点经过原点,所以不会出现重复点.
虽然我们把它翻到了x轴上方,但我们在处理的时候,还是在原图上基础上处理的,即每个点转到之后和直线的位置关系
只不过能更清楚的知道下一个遇到的点是什么
【NumberOf WA】
0
【Reviw】
老是重新算很麻烦,就尝试一步一步地改变.
【Code】
#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define ms(x,y) memset(x,y,sizeof x)
#define ri(x) scanf("%d",&x)
#define rl(x) scanf("%lld",&x)
#define rs(x) scanf("%s",x+1)
#define oi(x) printf("%d",x)
#define ol(x) printf("%lld",x)
#define oc putchar(' ')
#define os(x) printf(x)
#define all(x) x.begin(),x.end()
#define Open() freopen("F:\\rush.txt","r",stdin)
#define Close() ios::sync_with_stdio(0)
typedef pair<int,int> pii;
typedef pair<LL,LL> pll;
const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
const int N = 5e4;
struct abc{
LL x,y,val;
int tag;
double c;
friend bool operator < (const abc &a,const abc &b){
return a.c > b.c;
}
};
int n;
abc a[N+10];
LL sqr(LL x){
return x*x;
}
int main(){
//Open();
//Close();
int T;
ri(T);
while (T--){
ri(n);
rep1(i,1,n){
rl(a[i].x),rl(a[i].y),rl(a[i].val);
if (a[i].y < 0){
a[i].tag = 0;
a[i].x = - a[i].x;
a[i].y = - a[i].y;
}else
a[i].tag = 1;
a[i].c = 1.0*a[i].x/(1.0*sqrt((double)(sqr(a[i].x)+sqr(a[i].y))));
}
sort(a+1,a+1+n);
LL s0 = 0,s1 = 0,temp = 0,ans;
rep1(i,1,n){
if (a[i].tag==0)
s0 += a[i].val;
else
s1 += a[i].val;
}
rep1(i,1,n)
if (a[i].tag == 1)
temp += s0*a[i].val;
ans = temp;
rep1(i,1,n){
if (a[i].tag == 1){
temp = temp - a[i].val*s0 + a[i].val*(s1-a[i].val);
s1 -= a[i].val;
s0 += a[i].val;
}else{
temp = temp - a[i].val*s1 + a[i].val*(s0-a[i].val);
s1 += a[i].val;
s0 -= a[i].val;
}
ans = max(ans,temp);
}
ol(ans);puts("");
}
return 0;
}
【2017 Multi-University Training Contest - Team 7】Hard challenge的更多相关文章
- 【2017 Multi-University Training Contest - Team 2】TrickGCD
[Link]:http://acm.hdu.edu.cn/showproblem.php?pid=6053 [Description] 给你一个b数组,让你求一个a数组: 要求,该数组的每一位都小于等 ...
- 【2017 Multi-University Training Contest - Team 2】Maximum Sequence
[Link]:http://acm.hdu.edu.cn/showproblem.php?pid=6047 [Description] 给你一个数列a和一个数列b; 只告诉你a的前n项各是什么; 然后 ...
- 【2017 Multi-University Training Contest - Team 2】 Regular polygon
[Link]: [Description] 给你n个点整数点; 问你这n个点,能够组成多少个正多边形 [Solution] 整点只能构成正四边形. 则先把所有的边预处理出来; 枚举每某两条边为对角线的 ...
- 【2017 Multi-University Training Contest - Team 2】 Is Derek lying?
[Link]: [Description] 两个人都做了完全一样的n道选择题,每道题都只有'A','B','C' 三个选项,,每道题答对的话得1分,答错不得分也不扣分,告诉你两个人全部n道题各自选的是 ...
- 【2017 Multi-University Training Contest - Team 5】Rikka with Competition
[Link]: [Description] [Solution] 把所有人的能力从大到小排; 能力最大的肯定可能拿冠军; 然后一个一个地往后扫描; 一旦出现a[i-1]-a[i]>k; 则说明从 ...
- 【2017 Multi-University Training Contest - Team 5】Rikka with Subset
[Link]: [Description] 给你a数组的n个数的所有2^n个子集的2^n个子集元素的和; 子集元素的和最大为m; 告诉你各个子集元素的和出现的次数; 如 1 2 则0出现1次,1出现1 ...
- 【2017 Multi-University Training Contest - Team 5】Rikka with Graph
[Link]:http://acm.hdu.edu.cn/showproblem.php?pid=6090 [Description] 给你n个点; 让你在这n个点上最多连m条无向边; 使得 ∑ni= ...
- 【2017 Multi-University Training Contest - Team 4】Time To Get Up
[Link]: [Description] [Solution] 把每个数字长什么样存到数组里就好;傻逼题. (直接输入每一行是什么样子更快,不要一个字符一个字符地输入) [NumberOf WA] ...
- 【2017 Multi-University Training Contest - Team 4】Counting Divisors
[Link]:http://acm.hdu.edu.cn/showproblem.php?pid=6069 [Description] 定义d(i)为数字i的因子个数; 求∑rld(ik) 其中l,r ...
随机推荐
- OpenCV【2】---读取png图片显示到QT label上的问题
问题一: 操作图片test.png是一个365x365的PNG图片 通过OpenCV自带的GUI显示出来图像是没问题的,例如以下操作代码所看到的: QStringfileName=QFileD ...
- Lesson 2 Building your first web page: Part 2
Tag Diagram You may have noticed that HTML tags come in pairs; HTML has both an opening tag (<tag ...
- 2015北京网络赛 G Boxes BFS+打表
G Boxes 题意:n个位置摆有n个箱子,每次移动只能把相邻的垒起来,且上面的必须小于下面的.求摆成升序需要移动多少步. 思路:这里的n很小,只有7.但是bfs最快的情况需要2s左右,所以就打表了. ...
- 为什么linux驱动中变量或者函数都用static修饰?(知乎问题)
static定义的全局变量 或函数也只能作用于当前的文件. 世界硬件厂商太多,定义static为了防止变量或 函数 重名,定义成static, 就算不同硬件驱动中的 变更 或函数重名了也没关系 .
- request.getSession().getServletContext().getRealPath("")获取工程目录 路径修改
使用request.getSession().getServletContext().getRealPath("")获取工程目录. 设置server Locations在serve ...
- 思科2960trunk vlan配置及路由IP配置
en conf t vlan id end conf t inter rang gi 0/0/1-x switchport access vlan id no shutdown exit (confi ...
- java正則表達式总结
近期用到的正則表達式 因为近期在做一个android的新闻client.多次用到了正則表達式.因此总结下. 1.使用正則表達式获取Rss资源内的文章内容的图片url 由于在每条新闻浏览的listVie ...
- UDP连接调用connect()函数
UDP是一个无连接的协议,它没有像TCP中EOF之类的东西. 8.11 UDP的connect函数 除非套接字已连接,否则异步错误是不会反悔到UDP套接字的. 我们确实能够给UDP套接字调用conne ...
- Android 学习笔记进阶十二之裁截图片
package xiaosi.cut; import java.io.File; import android.app.Activity; import android.content.Intent; ...
- RGB-D action recognition using linear coding
First, a depth spatial-temporal descriptor is developed to extract the interested local regions in d ...