http://blog.csdn.net/u014492306/article/details/47981315 //变相离线做法

离散化缩小区间范围,做两大个线段树,第一个就是普通的持久化树,有个前缀和就好。

第二个用线段树套树状数组,每次询问就把这两个都求出来加一下。

更改就更改第二个,其实更改的时候只需要建一条链然后重复用这条链衍生就好了,但是为了抄的方便,就不改了。。。

当然这个空间上比较优秀的只有O(nlogn).

#include<bits/stdc++.h>
#define lowbit(x) (x&(-x))
using namespace std;
const int N=6e4+;
const int M=;
int m,n,nn,tot;
int a[N],f[N],T[N],S[N];
int sum[M],l[M],r[M];
int use[N];
int h(int x) {return lower_bound(f+,f+nn+,x)-f;}
void update(int pr,int lx,int rx,int v,int k){
l[++tot]=l[pr],r[tot]=r[pr],sum[tot]=sum[pr]+k;
if(lx==rx) return;
int mid=(lx+rx)>>;
if(v<=mid) l[tot]=tot+,update(l[pr],lx,mid,v,k);
else r[tot]=tot+,update(r[pr],mid+,rx,v,k);
}
int Sum(int x){
int res=;
for(int i=x;i;i-=lowbit(i)) res+=sum[l[use[i]]];
return res;
}
void add(int x,int v,int k){
int temp;
for(int i=x;i<=n;i+=lowbit(i)) {
temp=S[i];
S[i]=tot+;
update(temp,,nn,v,k);
}
}
int query(int L,int R,int k){
for(int i=L-;i;i-=lowbit(i)) use[i]=S[i];
for(int i=R;i;i-=lowbit(i)) use[i]=S[i];
int lx=,rx=nn,lt=T[L-],rt=T[R];
while(lx<rx) {
int mid=(lx+rx)>>;
int tmp=Sum(R)-Sum(L-)+sum[l[rt]]-sum[l[lt]];
if(k<=tmp) {
rx=mid;
for(int i=L-;i;i-=lowbit(i)) use[i]=l[use[i]];
for(int i=R;i;i-=lowbit(i)) use[i]=l[use[i]];
lt=l[lt],rt=l[rt];
}
else {
lx=mid+,k-=tmp;
for(int i=L-;i;i-=lowbit(i)) use[i]=r[use[i]];
for(int i=R;i;i-=lowbit(i)) use[i]=r[use[i]];
lt=r[lt],rt=r[rt];
}
}
return f[lx];
}
char op[];
int q[][],Ta;
int main(){
for(scanf("%d",&Ta);Ta--;) {
scanf("%d%d",&n,&m);
for(int i=;i<=n;++i) scanf("%d",a+i),f[i]=a[i];
nn=n;
for(int i=;i<=m;++i) {
scanf("%s",op);
if(op[]=='Q') {
scanf("%d%d%d",&q[i][],&q[i][],&q[i][]);
q[i][]=;
}
else {
scanf("%d%d",&q[i][],&q[i][]);
q[i][]=;
f[++nn]=q[i][];
}
}
sort(f+,f++nn);
nn=unique(f+,f+nn+)-f-;
tot=,T[]=;
for(int i=;i<=n;++i) T[i]=tot+,update(T[i-],,nn,h(a[i]),);
for(int i=;i<=n;++i) S[i]=;
for(int i=;i<=m;++i) {
if(q[i][]) printf("%d\n",query(q[i][],q[i][],q[i][]));
else {
add(q[i][],h(a[q[i][]]),-);
add(q[i][],h(q[i][]),);
a[q[i][]]=q[i][];
}
}
}
return ;
}

如果强制在线的话,只能一开始就用线段树套树状数组了,空间复杂度O(nlog(1e9)log(1e9)),为什么是1e9是因为你没办法事先离散化,因为你不知道更改的时候他要改成什。

http://blog.sina.com.cn/s/blog_4a0c4e5d0101c3yj.html

可修改的区间第K大 BZOJ1901 ZOJ2112的更多相关文章

  1. ZOJ -2112 Dynamic Rankings 主席树 待修改的区间第K大

    Dynamic Rankings 带修改的区间第K大其实就是先和静态区间第K大的操作一样.先建立一颗主席树, 然后再在树状数组的每一个节点开线段树(其实也是主席树,共用节点), 每次修改的时候都按照树 ...

  2. ZOJ 2112 Dynamic Rankings(带修改的区间第K大,分块+二分搜索+二分答案)

    Dynamic Rankings Time Limit: 10 Seconds      Memory Limit: 32768 KB The Company Dynamic Rankings has ...

  3. POJ2104-- K-th Number(主席树静态区间第k大)

    [转载]一篇还算可以的文章,关于可持久化线段树http://finaltheory.info/?p=249 无修改的区间第K大 我们先考虑简化的问题:我们要询问整个区间内的第K大.这样我们对值域建线段 ...

  4. 主席树区间第K大

    主席树的实质其实还是一颗线段树, 然后每一次修改都通过上一次的线段树,来添加新边,使得每次改变就改变logn个节点,很多节点重复利用,达到节省空间的目的. 1.不带修改的区间第K大. HDU-2665 ...

  5. 【ZOJ2112】【整体二分+树状数组】带修改区间第k大

    The Company Dynamic Rankings has developed a new kind of computer that is no longer satisfied with t ...

  6. Dynamic Rankings——带修改区间第k大

    三种做法:1.整体二分: 二分mid 考虑小于mid的修改的影响 但是大于mid的修改可能会干掉小于mid的一些值 所以额外把一个修改变成一个值的删除和一个值的添加 这样就相互独立了! 整体二分,树状 ...

  7. 【POJ】【2104】区间第K大

    可持久化线段树 可持久化线段树是一种神奇的数据结构,它跟我们原来常用的线段树不同,它每次更新是不更改原来数据的,而是新开节点,维护它的历史版本,实现“可持久化”.(当然视情况也会有需要修改的时候) 可 ...

  8. poj 2104 主席树(区间第k大)

    K-th Number Time Limit: 20000MS   Memory Limit: 65536K Total Submissions: 44940   Accepted: 14946 Ca ...

  9. POJ 2104 && POJ 2761 (静态区间第k大,主席树)

    查询区间第K大,而且没有修改. 使用划分树是可以做的. 作为主席树的入门题,感觉太神奇了,Orz /* *********************************************** ...

随机推荐

  1. HTML入门——互动式推送初尝试

    0.背景 疫情原因,导致许多大众喜闻乐见的体育活动停摆,但博主和队友们运营的体育社团公众号不能停摆.为了利用当下线上活动频率高的契机增加关注量,加之微信推送的互动性已成为趋势,博主打算和队友们尝试实现 ...

  2. UVALive 7509 Dome and Steles

    三分 #include<bits/stdc++.h> using namespace std; #define rep(i,a,b) for(int i=a;i<=b;++i) #d ...

  3. linux之centos安装jdk以及nginx详细过程

    一.安装jdk 1:首先下载jdk到本地,然后通过git 上传到linux服务器上 2:进入目录usr,并创建目录java,将jdk的压缩文件移动到该目录下 cd /usr mkdir java mv ...

  4. P1457 城堡 The Castle 位运算+BFS+思维(难题,好题)

    题目描述 我们憨厚的USACO主人公农夫约翰(Farmer John)以无法想象的运气,在他生日那天收到了一份特别的礼物:一张"幸运爱尔兰"(一种彩票).结果这张彩票让他获得了这次 ...

  5. 自动化API之一 生成开源ERP Odoo App 的RestFul API

    1.在服务器上安装开源ERP Odoo 安装步骤请自行百度,本文重点不在于指导安装,以下是安装后PC端效果. Odoo: 2.在Uniconnector平台上注册Odoo App 移动端应用 3.配置 ...

  6. Spring Framework 之AOP

    Spring Framework 之AOP 目录 Spring Framework 之AOP 问题 AOP概述 AOP知识 1.连接点(Joinpoint) 2.切点(PointCut) 3.增强(A ...

  7. HTTP请求头中的X-Forwarded-For介绍

    概述 我们在做nginx方向代理的时候,为了记录整个代理过程,我们往往会在配置文件中加上如下配置: location ^~ /app/download/ { ... proxy_set_header ...

  8. socket编程之时间回射服务器

    使用到的函数: // 返回值:读到的字节数,若已到文件尾,返回0:若出错,返回-1 ssize_t read(int fd, void *buf, size_t nbytes); // 返回值:若成功 ...

  9. Docker安装各种服务

    一. centos7设置固定IP 查看当前正在使用的网络情况 [root@localhost ~]# nmcli dev status 显示情况 : DEVICE TYPE     STATE   C ...

  10. 报错:Maven创建An internal error occurred during: "Retrieving archetypes:". Java heap space

    在Eclipse中创建Maven的Web项目时出现错误:An internal error occurred during: "Retrieving archetypes:". J ...