AVL树是一种自平衡(Self-balancing)二叉查找树(Binary Search Tree),要求任何一个节点的左子树和右子树的高度之差不能超过1。

AVL树的插入操作首先会按照普通二叉查找树的插入操作进行,不同的是在成功插入一个节点后会向上进行回溯,判断路径中的每一个节点左子树和右子树高度之差,如果相差大于1,则进行旋转操作使得树重新达到平衡状态,旋转的本质其实是为当前不平衡的子树选择一个新的根节点,以降低两侧的高度差。

这里以root表示不平衡节点(左右子树高度差大于1),旋转操作可分为以下四种:

  • 右旋转:当加入的节点在root的左子节点的左子树中(LL),以root为轴进行一次右旋转。
  • 左旋转:当加入的节点在root的右子节点的右子树中(RR),以root为轴进行一次左旋转。
  • 左右旋转:当加入的节点在root的左子节点的右子树中(LR),先以root的左子节点为轴进行一次左旋转,再以root为轴进行一次右旋转。
  • 右左旋转:当加入的节点在root的右子节点的左子树中(RL),先以root的右子节点为轴进行一次右旋转,再以root为轴进行一次左旋转。

代码如下:

#include <cstdio>
#include <cstdlib>
#define max(x, y) (((x) > (y)) ? (x) : (y))
typedef struct tnode
{
int val;
struct tnode * left;
struct tnode * right;
} node; //LL:右旋转
node * rotate_right(node * root) {
node * lnode = root->left;
root->left = lnode->right;
lnode->right = root;
return lnode;
} //RR:左旋转
node * rotate_left(node * root) {
node * rnode = root->right;
root->right = rnode->left;
rnode->left = root;
return rnode;
} //LR:先左旋转,再右旋转
node * rotate_left_right(node * root) {
root->left = rotate_left(root->left);
return rotate_right(root);
} //RL:先右旋转,再左旋转
node * rotate_right_left(node * root) {
root->right = rotate_right(root->right);
return rotate_left(root);
} //递归求得以root为根节点的树的高度
int get_height(node * root) {
if (root == NULL) return 0;
return max(get_height(root->left), get_height(root->right)) + 1;
} //在以root为根节点的树中插入值为val的节点
node * insert(node * root, int val) {
if (root == NULL) {
root = (node *) malloc(sizeof(node));
root->val = val;
root->left = NULL;
root->right = NULL;
} else if (val < root->val) {
root->left = insert(root->left, val);
if (get_height(root->left) - get_height(root->right) == 2) {
if (val < root->left->val) root = rotate_right(root);
else root = rotate_left_right(root);
}
} else {
root->right = insert(root->right, val);
if (get_height(root->right) - get_height(root->left) == 2) {
if (val > root->right->val) root = rotate_left(root);
else root = rotate_right_left(root);
}
} return root;
} int main(void) {
int n, val;
node * root = NULL; scanf("%d", &n);
for (int i = 0; i < n; i++) {
scanf("%d", &val);
root = insert(root, val);
} return 0;
}

AVL树的创建--C语言实现的更多相关文章

  1. 数据结构--Avl树的创建,插入的递归版本和非递归版本,删除等操作

    AVL树本质上还是一棵二叉搜索树,它的特点是: 1.本身首先是一棵二叉搜索树.   2.带有平衡条件:每个结点的左右子树的高度之差的绝对值最多为1(空树的高度为-1).   也就是说,AVL树,本质上 ...

  2. 数据结构与算法(九):AVL树详细讲解

    数据结构与算法(一):基础简介 数据结构与算法(二):基于数组的实现ArrayList源码彻底分析 数据结构与算法(三):基于链表的实现LinkedList源码彻底分析 数据结构与算法(四):基于哈希 ...

  3. 二叉查找树(BST)、平衡二叉树(AVL树)(只有插入说明)

    二叉查找树(BST).平衡二叉树(AVL树)(只有插入说明) 二叉查找树(BST) 特殊的二叉树,又称为排序二叉树.二叉搜索树.二叉排序树. 二叉查找树实际上是数据域有序的二叉树,即对树上的每个结点, ...

  4. 二叉查找树(BST)、平衡二叉树(AVL树)

    二叉查找树(BST) 特殊的二叉树,又称为排序二叉树.二叉搜索树.二叉排序树. 二叉查找树实际上是数据域有序的二叉树,即对树上的每个结点,都满足其左子树上所有结点的数据域均小于或等于根结点的数据域,右 ...

  5. AVL树原理及实现(C语言实现以及Java语言实现)

    欢迎探讨,如有错误敬请指正 如需转载,请注明出处http://www.cnblogs.com/nullzx/ 1. AVL定义 AVL树是一种改进版的搜索二叉树.对于一般的搜索二叉树而言,如果数据恰好 ...

  6. AVL树(一)之 图文解析 和 C语言的实现

    概要 本章介绍AVL树.和前面介绍"二叉查找树"的流程一样,本章先对AVL树的理论知识进行简单介绍,然后给出C语言的实现.本篇实现的二叉查找树是C语言版的,后面章节再分别给出C++ ...

  7. AVL树(查找、插入、删除)——C语言

    AVL树 平衡二叉查找树(Self-balancing binary search tree)又被称为AVL树(AVL树是根据它的发明者G. M. Adelson-Velskii和E. M. Land ...

  8. Avl树的基本操作(c语言实现)

    #include<stdio.h> #include<stdlib.h> typedef struct AvlNode *Position; typedef struct Av ...

  9. 深入浅出数据结构C语言版(12)——平衡二叉查找树之AVL树

    在上一篇博文中我们提到了,如果对普通二叉查找树进行随机的插入.删除,很可能导致树的严重不平衡 所以这一次,我们就来介绍一种最老的.可以实现左右子树"平衡效果"的树(或者说算法),即 ...

随机推荐

  1. 数据挖掘入门系列教程(十二)之使用keras构建CNN网络识别CIFAR10

    简介 在上一篇博客:数据挖掘入门系列教程(十一点五)之CNN网络介绍中,介绍了CNN的工作原理和工作流程,在这一篇博客,将具体的使用代码来说明如何使用keras构建一个CNN网络来对CIFAR-10数 ...

  2. 线程状态及各状态下与锁和CPU的关系

    线程的状态 Thread.State枚举类型中定义了线程的六种状态:NEW,RUNNABLE,BLOCKED,WAITING,TIMED_WAITING和TERMINATED. 线程在某一时刻只能拥有 ...

  3. golang 线上项目部署折腾之一

    最近自己使用golang折腾了一点东西,可是需要部署到线上才好玩,那么服务器使用了aws,然后使用了docker和没有使用docker部署了一次.简单记录一下过程 aws服务器 为什么使用aws呢,说 ...

  4. caffe学习笔记(1)安装 - Ubuntu 15.04

    官方安装手册 备注:使用系统 - Ubuntu 15.04 64位操作系统(若系统位于虚拟机上,在安装CUDA后,Ubuntu将无法进入图形界面) /************************* ...

  5. 数学--数论--Miller_Rabin判断一个大数是不是素数(随机算法)

    前提知识 1,费马定理:ap−1=1(mod p)a^{p-1}=1(mod\ p)ap−1=1(mod p)

  6. Springboot-WebFlux实现http重定向到https

    1 简介 Spring WebFlux是一个新兴的技术,Spring团队把宝都压在响应式Reactive上了,于是推出了全新的Web实现.本文不讨论响应式编程,而是通过实例讲解Springboot W ...

  7. P1750 出栈序列

    这好像是普及难度的吧~ 感觉再次被小学生吊打了........ \(\color{Red}{----------------------=|(●'◡'●)|=我是手动的分割线------------- ...

  8. B. Math Show 暴力 C - Four Segments

    B. Math Show 这个题目直接暴力,还是有点难想,我没有想出来,有点思维. #include <cstdio> #include <cstdlib> #include ...

  9. Android 电池管理系统架构总结 Android power and battery management architecture summaries

    文章目录 1 整体架构 2 设计构架 2.1 driver 2.1.1 Charger.ko 2.1.2 Battery.ko 2.2 power supply 2.2.1 基础架构 2.2.2 代码 ...

  10. Pytest 单元测试框架

    1.pytest 是 python 的第三方单元测试框架,比自带 unittest 更简洁和高效 2.安装 pytest pip install pytest 3.验证 pytest 是否安装成功 p ...