PCA

一、概念

主成分分析(Principal Component Analysis)是指将多个变量通过线性变换以选出较少数重要变量的一种多元统计分析方法,又称为主成分分析。在实际应用场合中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个应用场合的某些信息。

主成分分析是设法将原来众多具有一定相关性(比如N个指标)的指标,重新组合成一组新的相互无关的综合指标来代替原来的指标,从而实现数据降维的目的,这也是MLlib的处理手段之一。

二、代码实现

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.mllib.feature.PCA;
import org.apache.spark.mllib.feature.PCAModel;
import org.apache.spark.mllib.linalg.Matrix;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.mllib.linalg.distributed.RowMatrix;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.rdd.RDD; SparkConf conf = new SparkConf().setAppName("PCA").setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf); /**
* 使用test.data矩阵
1 2 3 4 5 6 7 8 9
5 6 7 8 9 0 8 6 7
9 0 8 7 1 4 3 2 1
6 4 2 1 3 4 2 1 5
*/
JavaRDD<String> source = sc.textFile("data/mllib/test.data");
JavaRDD<Vector> data = source.map(line->{
String[] parts = line.split(" ");
return Vectors.dense(Double.parseDouble(parts[0]),
Double.parseDouble(parts[1]),
Double.parseDouble(parts[2]),
Double.parseDouble(parts[3]),
Double.parseDouble(parts[4]),
Double.parseDouble(parts[5]),
Double.parseDouble(parts[6]),
Double.parseDouble(parts[7]),
Double.parseDouble(parts[8]));
});
data.foreach(x->{
System.out.println(x);
});

控制台输出结果:

[1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0]
[5.0,6.0,7.0,8.0,9.0,0.0,8.0,6.0,7.0]
[9.0,0.0,8.0,7.0,1.0,4.0,3.0,2.0,1.0]
[6.0,4.0,2.0,1.0,3.0,4.0,2.0,1.0,5.0]
RowMatrix rm = new  RowMatrix(data.rdd());
Matrix pc = rm.computePrincipalComponents(3);
System.out.println(pc);

控制台输出结果:

-0.41267731212833847   -0.3096216957951525    0.1822187433607524
0.22357946922702987 -0.08150768817940773 0.5905947537762997
-0.08813803143909382 -0.5339474873283436 -0.2258410886711858
0.07580492185074224 -0.56869017430423 -0.28981327663106565
0.4399389896865264 -0.23105821586820194 0.3185548657550075
-0.08276152212493619 0.3798283369681188 -0.4216195003799105
0.3952116027336311 -0.19598446496556066 -0.17237034054712738
0.43580231831608096 -0.023441639969444372 -0.4151661847170216
0.468703853681766 0.2288352748369381 0.04103087747663084

可以看到,主成分矩阵是一个尺寸为(9,3)的矩阵,其中每一列代表一个主成分(新坐标轴),每一行代表原有的一个特征,而a.data矩阵可以看成是一个有4个样本,9个特征的数据集,那么,主成分矩阵相当于把原有的9维特征空间投影到一个3维的空间中,从而达到降维的效果。

RowMatrix rm2 = rm.multiply(pc);
RDD<Vector> v = rm2.rows();
JavaRDD<Vector> vector = v.toJavaRDD();
vector.foreach(x->{
System.out.println(x);
});

控制台输出结果:

[12.247647483894383,-2.725468189870252,-5.568954759405281]
[12.284448024169402,-12.510510992280857,-0.16048149283293078]
[-1.2537294080109986,-10.15675264890709,-4.8697886049036025]
[2.8762985358626505,-2.2654415718974685,1.428630138613534]

MLlib提供的PCA变换方法最多只能处理65535维的数据。

spark机器学习从0到1主成分分析-PCA (八)的更多相关文章

  1. spark机器学习从0到1介绍入门之(一)

      一.什么是机器学习 机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多门学科.专门研究计算机怎样模拟或实现人类的学习行 ...

  2. spark机器学习从0到1特征提取 TF-IDF(十二)

        一.概念 “词频-逆向文件频率”(TF-IDF)是一种在文本挖掘中广泛使用的特征向量化方法,它可以体现一个文档中词语在语料库中的重要程度. 词语由t表示,文档由d表示,语料库由D表示.词频TF ...

  3. spark机器学习从0到1奇异值分解-SVD (七)

      降维(Dimensionality Reduction) 是机器学习中的一种重要的特征处理手段,它可以减少计算过程中考虑到的随机变量(即特征)的个数,其被广泛应用于各种机器学习问题中,用于消除噪声 ...

  4. spark机器学习从0到1基本数据类型之(二)

        MLlib支持存储在单个机器上的局部向量和矩阵,以及由一个或多个RDD支持的分布式矩阵. 局部向量和局部矩阵是用作公共接口的简单数据模型. 底层线性代数操作由Breeze提供. 在监督学习中使 ...

  5. [机器学习之13]降维技术——主成分分析PCA

    始终贯彻数据分析的一个大问题就是对数据和结果的展示,我们都知道在低维度下数据处理比较方便,因而数据进行简化成为了一个重要的技术.对数据进行简化的原因: 1.使得数据集更易用使用.2.降低很多算法的计算 ...

  6. spark机器学习从0到1特征变换-标签和索引的转化(十六)

      一.原理 在机器学习处理过程中,为了方便相关算法的实现,经常需要把标签数据(一般是字符串)转化成整数索引,或是在计算结束后将整数索引还原为相应的标签. Spark ML 包中提供了几个相关的转换器 ...

  7. spark机器学习从0到1特征选择-卡方选择器(十五)

      一.公式 卡方检验的基本公式,也就是χ2的计算公式,即观察值和理论值之间的偏差   卡方检验公式 其中:A 为观察值,E为理论值,k为观察值的个数,最后一个式子实际上就是具体计算的方法了 n 为总 ...

  8. spark机器学习从0到1机器学习工作流 (十一)

        一.概念 一个典型的机器学习过程从数据收集开始,要经历多个步骤,才能得到需要的输出.这非常类似于流水线式工作,即通常会包含源数据ETL(抽取.转化.加载),数据预处理,指标提取,模型训练与交叉 ...

  9. spark机器学习从0到1决策树(六)

      一.概念 决策树及其集合是分类和回归的机器学习任务的流行方法. 决策树被广泛使用,因为它们易于解释,处理分类特征,扩展到多类分类设置,不需要特征缩放,并且能够捕获非线性和特征交互. 诸如随机森林和 ...

随机推荐

  1. thinkphp if便签的使用

    <foreach name="list" item='v'> <tr> <td><img class="user" s ...

  2. 家用PC机打造VSphere5.1 测试环境:之部署VCenter Server 5.1

    家用PC机打造VSphere5.1 测试环境前言:实践出真知,同样学习VMware VSphere 的朋友,也需要不断的测试总结,再测试再总结只有不断的积累才能学好,但是动辄几万的服务器不是所有朋友都 ...

  3. CF思维联系–CodeForces - 223 C Partial Sums(组合数学的先线性递推)

    ACM思维题训练集合 You've got an array a, consisting of n integers. The array elements are indexed from 1 to ...

  4. 疯子的算法总结10--最小生成树Kruscal

    按照权值排序可得,就有如下顺序: 1. 1-2 1 2. 1-4 2 3. 1-5 2 4. 2-5 3 5. 2-3 4 6. 4-5 4 每次选取最小边泉,判断是否同属一个集合,如果不属于同一集合 ...

  5. UVA352 The Seasonal War

    本文为UserUnknown原创 题目本身不难理解,就是深搜(或广搜,有可能以后会加在这里). 但是洛谷的题目中没有截到输入输出的格式,下面是我从UVA复制下来的样例: Sample input 6 ...

  6. <学习笔记之 JQuery>

    1. mouseenter   当鼠标指针进入(穿过)元素时,触发事件 var is_enter_help = false; $("#help-div").mouseenter(f ...

  7. c/c++获取文件夹下所有文件名

    如何获取某一文件夹下所有文件名,是一个很有意思的问题.网上代码很多,找了个简单的,特此收录. #include <iostream> #include <io.h> #incl ...

  8. Kubernetes实战总结

    >>> 目录 <<< 一.概述二.核心组件三.基本概念四.系统架构五.镜像制作六.服务编排七.持续部署八.故障排查 >>> 正文 << ...

  9. 说一说Web开发中两种常用的分层架构及其对应的代码模型

    昨天妹子让我帮她解决个问题,本以为可以轻松搞定,但是打开他们项目的一瞬间,我头皮发麻.本身功能不多的一个小项目,解决方案里竟然有几十个类库.仅仅搞明白各个类库的作用,代码层次之间的引用关系就花了一个多 ...

  10. Java——Lambda表达式

    一.Lambda表达式入门 我们先来看一段代码:匿名内部类的方式实现参数的传递 interface Command{ public abstract void test(); } public cla ...