Day4 - K - Ant Trip HDU - 3018
Ant Tony,together with his friends,wants to go through every part of the country.
They intend to visit every road , and every road must be visited for exact one time.However,it may be a mission impossible for only one group of people.So they are trying to divide all the people into several groups,and each may start at different town.Now tony wants to know what is the least groups of ants that needs to form to achieve their goal.
InputInput contains multiple cases.Test cases are separated by several blank lines. Each test case starts with two integer N(1<=N<=100000),M(0<=M<=200000),indicating that there are N towns and M roads in Ant Country.Followed by M lines,each line contains two integers a,b,(1<=a,b<=N) indicating that there is a road connecting town a and town b.No two roads will be the same,and there is no road connecting the same town.OutputFor each test case ,output the least groups that needs to form to achieve their goal.Sample Input
3 3
1 2
2 3
1 3 4 2
1 2
3 4
Sample Output
1
2
Hint
New ~~~ Notice: if there are no road connecting one town ,tony may forget about the town.
In sample 1,tony and his friends just form one group,they can start at either town 1,2,or 3.
In sample 2,tony and his friends must form two group.
简述:一个有回路与通路的混合图,问几笔能画完,忽略孤立点。
思路:不打印解,就使用并查集找到每条路的"root",无向图,统计每条路上奇度数的点,队伍数 = 回路数 + 通路数(奇数点/2)
代码如下:
const int maxm = ; int degree[maxm], fa[maxm], vis[maxm], num[maxm], N, M;
vector<int> root; void init() {
memset(degree, , sizeof(degree)), memset(vis, , sizeof(vis)), memset(num, , sizeof(num));
root.clear();
for (int i = ; i <= N; ++i)
fa[i] = i;
} int Find(int x) {
if(x == fa[x])
return x;
return fa[x] = Find(fa[x]);
} void Union(int x,int y) {
int fx = Find(x), fy = Find(y);
if(fx != fy)
fa[fy] = fx;
} int main() {
while(scanf("%d%d",&N,&M) != EOF) {
init();
for (int i = ; i < M; ++i) {
int t1, t2;
scanf("%d%d", &t1, &t2);
degree[t1]++, degree[t2]++;
Union(t1, t2);
}
for(int i = ; i <= N; ++i) {
int f = Find(i);
if(!vis[f]) {
root.push_back(f);
vis[f] = ;
}
if(degree[i] % ) {
num[f]++;
}
}
int sum = ;
for (auto i = root.begin(); i != root.end(); ++i) {
if(degree[*i] == )
continue;
else if (num[*i] == )
sum++;
else if (num[*i])
sum += num[*i] / ;
}
printf("%d\n", sum);
}
return ;
}
为什么通路数是奇数点/2呢?(没学离散,后面填坑)直接画图就能证明必要性,回路也如此。
Day4 - K - Ant Trip HDU - 3018的更多相关文章
- Ant Trip HDU - 3018(欧拉路的个数 + 并查集)
题意: Ant Tony和他的朋友们想游览蚂蚁国各地. 给你蚂蚁国的N个点和M条边,现在问你至少要几笔才能所有边都画一遍.(一笔画的时候笔不离开纸) 保证这M条边都不同且不会存在同一点的自环边. 也就 ...
- [欧拉回路] hdu 3018 Ant Trip
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3018 Ant Trip Time Limit: 2000/1000 MS (Java/Others) ...
- hdu 3018 Ant Trip 欧拉回路+并查集
Ant Trip Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem ...
- HDU 3018 Ant Trip (欧拉回路)
Ant Trip Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- HDU 3018 Ant Trip(欧拉回路,要几笔)
Ant Trip Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- HDU 3108 Ant Trip
Ant Trip Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- HDU3018:Ant Trip(欧拉回路)
Ant Trip Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- hdu-3018 Ant Trip(欧拉路径)
题目链接: Ant Trip Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 3018 欧拉回路
HDU - 3018 Ant Country consist of N towns.There are M roads connecting the towns. Ant Tony,together ...
随机推荐
- SZWI3800
xml <mapper namespace="jp.co.alsok.g6.zwi.dao.mapper.g6.custom.SZWI3800Mapper"> < ...
- CSS布局的三种机制
浮动元素之间没有缝隙,这和行内块还是不一样的,有点区别的! 2) 浮动元素与兄弟盒子之间的关系 注意:解决浮动的四种办法,后三种都是针对浮动元素的父元素的.
- 第4课.编写通用的Makefile
1.框架 1. 顶层目录的Makefile 2. 顶层目录的Makefile.build 3. 各级子目录的Makefile 2.概述 1.各级子目录的Makefile: 它最简单,形式如下: obj ...
- LeetCode困难题(一)
题目一: 给你一个链表,每 k 个节点一组进行翻转,请你返回翻转后的链表. k 是一个正整数,它的值小于或等于链表的长度. 如果节点总数不是 k 的整数倍,那么请将最后剩余的节点保持原有顺序. 示例 ...
- 第4节 Scala中的actor介绍:1、actor概念介绍;2、actor执行顺序和发送消息的方式
10. Scala Actor并发编程 10.1. 课程目标 10.1.1. 目标一:熟悉Scala Actor并发编程 10.1.2. 目标二:为学习Akka做准备 注:Sca ...
- Synchronized用于线程间的数据共享,而ThreadLocal则用于线程间的数据隔离。
Synchronized用于线程间的数据共享,而ThreadLocal则用于线程间的数据隔离.
- SystemProperities
SystemProperties与Settings.System 1 使用 SystemProperties.get 如果属性名称以“ro.”开头,那么这个属性被视为只读属性.一旦设置,属性值不能改变 ...
- Java连载78-深入自动拆装箱、Date类和SimpleDateFormat格式化
一.深入自动拆装箱 1.直接举例: public class D78_AutomaticUnpackingAndPacking{ public static void main(String[] ar ...
- JAVA 内部类 总结
内部类是指在一个外部类的内部再定义一个类.内部类作为外部类的一个成员,并且依附于外部类而存在的.内部类可为静态,可用protected和private修饰(而外部类只能使用public和缺省的包访问权 ...
- No module named 'widgets'
https://blog.csdn.net/heatdeath/article/details/70313645 适配python3的. https://github.com/twz915/Djang ...