Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others.

Farmer John has cooked fabulous meals for his cows, but he forgot to check his menu against their preferences. Although he might not be able to stuff everybody, he wants to give a complete meal of both food and drink to as many cows as possible.

Farmer John has cooked F (1 ≤ F ≤ 100) types of foods and prepared D (1 ≤ D ≤ 100) types of drinks. Each of his N (1 ≤ N ≤ 100) cows has decided whether she is willing to eat a particular food or drink a particular drink. Farmer John must assign a food type and a drink type to each cow to maximize the number of cows who get both.

Each dish or drink can only be consumed by one cow (i.e., once food type 2 is assigned to a cow, no other cow can be assigned food type 2).

Input

Line 1: Three space-separated integers: NF, and D 
Lines 2.. N+1: Each line i starts with a two integers Fi and Di, the number of dishes that cow i likes and the number of drinks that cow i likes. The next Fiintegers denote the dishes that cow i will eat, and the Di integers following that denote the drinks that cow i will drink.

Output

Line 1: A single integer that is the maximum number of cows that can be fed both food and drink that conform to their wishes

Sample Input

4 3 3
2 2 1 2 3 1
2 2 2 3 1 2
2 2 1 3 1 2
2 1 1 3 3

Sample Output

3

Hint

One way to satisfy three cows is: 
Cow 1: no meal 
Cow 2: Food #2, Drink #2 
Cow 3: Food #1, Drink #1 
Cow 4: Food #3, Drink #3 
The pigeon-hole principle tells us we can do no better since there are only three kinds of food or drink. Other test data sets are more challenging, of course.
 
 
 
 
牛吃草问题,这个牛是一个点,有因为每一头牛只能用一次,所以要进行拆点。
这个图很好建的,我就不说了。
 
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <queue>
#include <cstring>
#include <vector>
#define inf 0x3f3f3f3f
using namespace std;
const int maxn = 1e5 + ;
int n, f, d;
struct node
{
int from, to, cap, flow;
node(int from = , int to = , int cap = , int flow = ) :from(from), to(to), cap(cap), flow(flow) {}
};
vector<node>e;
vector<int>G[maxn];
int level[maxn], iter[maxn];
void add(int u, int v, int w)
{
e.push_back(node(u, v, w, ));
e.push_back(node(v, u, , ));
int m = e.size();
G[u].push_back(m - );
G[v].push_back(m - );
} void bfs(int s)//这个是为了构建层次网络,也就是level的构建
{
memset(level, -, sizeof(level));
queue<int>que;
que.push(s);
level[s] = ;
while (!que.empty())
{
int u = que.front(); que.pop();
for (int i = ; i < G[u].size(); i++)
{
node &now = e[G[u][i]];
if (now.cap > now.flow&&level[now.to] < )//只有这个没有满并且没有被访问过才可以被访问
{
level[now.to] = level[u] + ;
que.push(now.to);
}
}
}
} int dfs(int u, int v, int f)
{
if (u == v) return f;
for (int &i = iter[u]; i < G[u].size(); i++)
{
node &now = e[G[u][i]];
if (now.cap > now.flow&&level[now.to] > level[u])
{
int d = dfs(now.to, v, min(f, now.cap - now.flow));
if (d > )
{
now.flow += d;
e[G[u][i] ^ ].flow -= d;
return d;
}
}
}
return ;
} int Maxflow(int s, int t)
{
int flow = ;
while ()
{
bfs(s);
if (level[t] < ) return flow;
memset(iter, , sizeof(iter));
int f;
while ((f = dfs(s, t, inf) > )) flow += f;
}
}
void init()
{
for (int i = ; i <= n + ; i++) G[i].clear();
e.clear();
} int main()
{
while (cin >> n >> f >> d)
{
init();
int s = , t = f + * n + d + ;
for (int i = ; i <= f; i++) add(s, i, );
for (int i = ; i <= n; i++)
{
int a, b;
cin >> a >> b;
while (a--)//与牛i相连
{
int x;
cin >> x;
add(x, f + i, );
}
add(f + i, f + n + i, );
while (b--)
{
int x;
cin >> x;
add(f + n + i, f + * n + x, );
}
}
for (int i = ; i <= d; i++) add(f + * n + i, t, );
int ans = Maxflow(s, t);
cout << ans << endl;
}
return ;
}
 
 

B - Dining POJ - 3281 网络流的更多相关文章

  1. POJ 3281 网络流dinic算法

    B - Dining Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit S ...

  2. POJ 3281 网络流 拆点保证本身只匹配一对食物和饮料

    如何建图? 最开始的问题就是,怎么表示一只牛有了食物和饮料呢? 后来发现可以先将食物与牛匹配,牛再去和饮料匹配,实际上这就构成了三个层次. 起点到食物层边的容量是1,食物层到奶牛层容量是1,奶牛层到饮 ...

  3. POJ 3281 网络流 拆点 Dining

    题意: 有F种食物和D种饮料,每头牛有各自喜欢的食物和饮料,而且每种食物或者饮料只能给一头牛. 求最多能有多少头牛能同时得到它喜欢的食物或者饮料. 分析: 把每个牛拆点,中间连一条容量为1的边,保证一 ...

  4. kuangbin专题专题十一 网络流 Dining POJ - 3281

    题目链接:https://vjudge.net/problem/POJ-3281 题目:有不同种类的食物和饮料,每种只有1个库存,有N头牛,每头牛喜欢某些食物和某些饮料,但是一头牛 只能吃一种食物和喝 ...

  5. poj 3281(网络流+拆点)

    题目链接:http://poj.org/problem?id=3281 思路:设一个超级源点和一个超级汇点,源点与食物相连,饮料与汇点相连,然后就是对牛进行拆点,一边喜欢的食物相连,一边与喜欢的饮料相 ...

  6. POJ 3281 网络流

    题意: 思路: 网络流 重在建图- 建完了图 就一切都好说了 这道题 我的想法是 先把源点和所有的食品连上边 (容量为1) 再把食品和对应的奶牛连上边 (容量为1) 这个时候要拆点 因为每只奶牛只能才 ...

  7. B - Dining - poj 3281(最大流)

    题目大意:有一群牛,还有一些牛喜欢的食物和喜欢的饮料,不过这些牛都很特别,他们不会与别的牛吃同一种食物或者饮料,现在约翰拿了一些食物和饮料,同时他也知道这些牛喜欢的食物和饮料的种类,求出来最多能让多少 ...

  8. Dining POJ - 3281

    题意: f个食物,d杯饮料,每个牛都有想吃的食物和想喝的饮料,但食物和饮料每个只有一份 求最多能满足多少头牛.... 解析: 一道简单的无源汇拆点最大流   无源汇的一个最大流,先建立超级源s和超级汇 ...

  9. AC日记——Dining poj 3281

    [POJ-3281] 思路: 把牛拆点: s向食物连边,流量1: 饮料向t连边,流量1: 食物向牛1连边,流量1: 牛2向饮料连边,流量1: 最大流: 来,上代码: #include <cstd ...

随机推荐

  1. MySQL中information_schema 数据库 是干什么的

    MySQL中information_schema是什么 大家在安装或使用MYSQL时,会发现除了自己安装的数据库以外,还有一个information_schema数据库. information_sc ...

  2. AJ学IOS 之微博项目实战(11)发送微博自定义TextView实现带占位文字

    AJ分享,必须精品 一:效果 二:代码: 由于系统自带的UITextField:和UITextView:不能满足我们的需求,所以我们需要自己设计一个. UITextField: 1.文字永远是一行,不 ...

  3. C++基础的一些代码和笔记 stl乱炖

    STL: 标准模板库.各种函数的模板和类的模板几个概念:容器:可容纳各种数据类型的通用数据结构,是类模板.迭代器:可用于依次存取容器中的元素,类似于指针,用iterator来进行对一个容器中单个元素的 ...

  4. J - Recommendations CodeForces - 1315D

    https://blog.csdn.net/w_udixixi/article/details/104479288 大意:n个数,每个数只能向上加,a[i]+1需要的时间是t[i],求使这n个数无重复 ...

  5. AI vs PS 矢量 VS 位图

    矢量图 AI最大可以放大64000%.不会失真,依然很清晰.原理是不同的点以及点与点之间的路径构成的,不论放大的多大,点在路径在,就可以精确的计算出它的区域.AI中无法直接编辑位图. 位图 代表PS, ...

  6. 统计字符串中每种字符出现的评率(HashMap中getOrDefault(K, V)方法的使用)

    为了统计字符串中每种字符出现的频率,使用HashMap这种数据结构.其中,字符作为Key,出现的频率作为Value. 基本算法为: 1. 将字符串分成字符数组 2. (1)如果HashMap中的Key ...

  7. JWT验证机制【Python版Flask或自己写的后端可以用】【刘新宇】

    JWT Json Web Token(JWT) JSON Web Token(JWT)是一个非常轻巧的规范.这个规范允许我们使用JWT在两个组织之间传递安全可靠的信息. 官方定义:JSON Web T ...

  8. docker(2)

    docker三大核心组件的概念 1镜像: Docker 镜像类似于虚拟机镜像,可以将它理解为一个只读的模板.例如,一个镜像可以包含一个基本的操作系统环境,里面仅安装了 Apache 应用程序(或用户需 ...

  9. libeay32.dll 1.0.2j crash

    https://github.com/BOINC/boinc/issues/2470 他们认为是CPU不同造成的 另外一个可能的原因 Changes between 1.0.2j and 1.0.2k ...

  10. Spring5参考指南: SpEL

    文章目录 Bean定义中的使用 求值 支持的功能 函数 Bean引用 If-Then-Else Elvis Safe Navigation 运算符 集合选择 集合投影 表达式模板化 SpEL的全称叫做 ...