All questions are simple level.

Construct String from Binary Tree

Question[606]:You need to construct a string consists of parenthesis and integers from a binary tree with the preorder traversing way. The null node needs to be represented by empty parenthesis pair "()". And you need to omit all the empty parenthesis pairs that don't affect the one-to-one mapping relationship between the string and the original binary tree.

Example

Input: Binary tree: [1,2,3,4]
1
/ \
2 3
/
4
Output: "1(2(4))(3)"
Explanation: Originallay it needs to be "1(2(4)())(3()())", but you need to omit all the unnecessary empty parenthesis pairs. And it will be "1(2(4))(3)".

Solution

Use pre-order traversal. These two methods is the same. The first one is implemented by passing arguments by reference. The second one is implemented by returned value.

class Solution
{
public:
string tree2str(TreeNode *t)
{
// string s = "";
// preorder(t, s);
// return s;
return preorder2(t);
} void preorder(TreeNode *p, string &s)
{
if (p == nullptr)
return;
string sval = to_string(p->val);
string l, r;
preorder(p->left, l);
preorder(p->right, r);
s += sval;
bool lflag = (l != "");
bool rflag = (r != "");
if (lflag && rflag)
s += "(" + l + ")(" + r + ")";
if (!lflag && rflag)
s += "()(" + r + ")";
if (lflag && !rflag)
s += "(" + l + ")";
} string preorder2(TreeNode *p)
{
if (p == nullptr)
return "";
bool l = (p->left != nullptr);
bool r = (p->right != nullptr);
string sval = to_string(p->val);
if (l && r)
return sval + "(" + preorder2(p->left) + ")(" + preorder2(p->right) + ")";
if (!l && r)
return sval + "()(" + preorder2(p->right) + ")";
if (l && !r)
return sval + "(" + preorder2(p->left) + ")";
return sval;
}
};

Merge Two Binary Trees

Question[617]: Given two binary trees and imagine that when you put one of them to cover the other, some nodes of the two trees are overlapped while the others are not. You need to merge them into a new binary tree. The merge rule is that if two nodes overlap, then sum node values up as the new value of the merged node. Otherwise, the NOT null node will be used as the node of new tree.

Solution: Two versions, including recursion and iteration.

  • Recursion version-1: create a completely new tree

    class Solution
    {
    public:
    TreeNode *mergeTrees(TreeNode *t1, TreeNode *t2)
    {
    TreeNode *root = nullptr;
    innerMerge(root, t1, t2);
    return root;
    }
    void innerMerge(TreeNode *&p, TreeNode *t1, TreeNode *t2)
    {
    bool flag1 = (t1 != nullptr);
    bool flag2 = (t2 != nullptr);
    if (flag1 && flag2)
    p = new TreeNode(t1->val + t2->val);
    else if (!flag1 && flag2)
    p = new TreeNode(t2->val);
    else if (flag1 && !flag2)
    p = new TreeNode(t1->val);
    else
    return;
    innerMerge(p->left, flag1 ? t1->left : nullptr, flag2 ? t2->left : nullptr);
    innerMerge(p->right, flag1 ? t1->right : nullptr, flag2 ? t2->right : nullptr);
    }
    };
  • Recursion version-2: directly modify on t1

    class Solution
    {
    public:
    TreeNode *mergeTrees(TreeNode *t1, TreeNode *t2)
    {
    return innerMerge(t1, t2);
    } TreeNode *innerMerge(TreeNode *t1, TreeNode *t2)
    {
    if (t1 == nullptr)
    return t2;
    if (t2 == nullptr)
    return t1;
    t1->val += t2->val;
    t1->left = innerMerge(t1->left, t2->left);
    t1->right = innerMerge(t1->right, t2->right);
    return t1;
    }
    };
  • Iteration-version implemented by pre-order traversal, modify on t1 :

    TreeNode *mergeTrees(TreeNode *t1, TreeNode *t2)
    {
    return preorderMerge(t1, t2);
    }
    TreeNode *preorderMerge(TreeNode *t1, TreeNode *t2)
    {
    typedef pair<TreeNode *, TreeNode *> node;
    if (t1 == nullptr)
    return t2;
    stack<node> s;
    s.push(node(t1, t2));
    while (!s.empty())
    {
    node n = s.top();
    s.pop();
    if (n.second == nullptr)
    continue;
    n.first->val += n.second->val;
    if (n.first->left == nullptr)
    n.first->left = n.second->left;
    else
    s.push(node(n.first->left, n.second->left));
    if (n.first->right == nullptr)
    n.first->right = n.second->right;
    else
    s.push(node(n.first->right, n.second->right));
    }
    return t1;
    }

Average of Levels in Binary Tree

Question[637]: Given a non-empty binary tree, return the average value of the nodes on each level in the form of an array.

Example

Input:
3
/ \
9 20
/ \
15 7
Output: [3, 14.5, 11]
Explanation: The average value of nodes on level 0 is 3, on level 1 is 14.5, and on level 2 is 11. Hence return [3, 14.5, 11].

Solution

  • Level-order traversal. Use the map sumrecord to record the sum of each level. Use numrecord to record the number of nodes of each level.

    vector<double> averageOfLevels(TreeNode *root)
    {
    typedef pair<TreeNode *, int> node;
    unordered_map<int, double> sumrecord;
    unordered_map<int, int> numrecord;
    queue<node> q;
    q.push(node(root, 0));
    while (!q.empty())
    {
    auto n = q.front();
    q.pop();
    sumrecord[n.second] += n.first->val;
    numrecord[n.second]++;
    if (n.first->left != nullptr)
    q.push(node(n.first->left, n.second + 1));
    if (n.first->right != nullptr)
    q.push(node(n.first->right, n.second + 1));
    }
    vector<double> v(numrecord.size());
    for (auto &x : sumrecord)
    v[x.first] = x.second / numrecord[x.first];
    return v;
    }
  • Level-order traversal. Only use queue, discard the help of node and unordered_map.

    vector<double> levelorder(TreeNode *root)
    {
    vector<double> v;
    queue<TreeNode *> q;
    q.push(root);
    while (!q.empty())
    {
    queue<TreeNode *> nextlevel;
    int64_t sum = 0;
    int counter = 0;
    while (!q.empty())
    {
    auto p = q.front();
    q.pop();
    sum += p->val, counter++;
    if (p->left != nullptr)
    nextlevel.push(p->left);
    if (p->right != nullptr)
    nextlevel.push(p->right);
    }
    q = nextlevel;
    v.push_back(sum * 1.0 / counter);
    }
    return v;
    }

Two Sum IV - Input is a BST

Question[653]: Given a Binary Search Tree and a target number, return true if there exist two elements in the BST such that their sum is equal to the given target.

Example

Input:
5
/ \
3 6
/ \ \
2 4 7
Target = 9
Output: True
Explanation: 9 = 3+6, 9 = 2+7, 9 = 4+5

Solution

First, implement a function named search(root, val) which is used to search val in a tree root. Then, traversal the tree root to judge every node p whether there is another node q satisfies p->val + q->val == k.

bool search(TreeNode *p, int val, TreeNode *exceptNode)
{
if (p == nullptr)
return false;
if (p->val == val && p != exceptNode)
return true;
if (val < p->val)
return search(p->left, val, exceptNode);
return search(p->right, val, exceptNode);
}
bool levelorder(TreeNode *root, int k)
{
queue<TreeNode *> q;
q.push(root);
while (!q.empty())
{
auto p = q.front();
q.pop();
int val = k - p->val;
if (search(root, val, p))
return true;
if (p->left != nullptr)
q.push(p->left);
if (p->right != nullptr)
q.push(p->right);
}
return false;
}

Trim a Binary Search Tree

Question[669]: Given a binary search tree and the lowest and highest boundaries as L and R, trim the tree so that all its elements lies in [L, R] (R >= L). You might need to change the root of the tree, so the result should return the new root of the trimmed binary search tree.

Example-1

Input-1:
1
/ \
0 2
L = 1
R = 2
Output-1:
1
\
2

Example-2

Input-2:
3
/ \
0 4
\
2
/
1
L = 1
R = 3
Output-2:
3
/
2
/
1

Solution

For each node of a BST, there are only three cases:

  1. val < L
  2. val > R
  3. L <= val <= R

When val < L, for an example:

   parent            parent          parent
| | |
9 ==> 9 ==> right
/ \ / \
left right null right

All values in the left sub-tree should be less than 9, hence the left sub-tree should be discarded. And because of '9' is less than L, hence it also should be discarded. The code to do these two operations is:

p->left = nullptr, p = trim(p->right)

The case val > R is similar to case val < L.

For the case L <= val <= R, there is nothing to do on the val node. Just continue to trim on its left sub-tree and right sub-tree.

Version-1:

TreeNode *trimBST(TreeNode *root, int L, int R)
{
return innerTrim(root, L, R);
}
TreeNode *innerTrim(TreeNode *&p, int l, int r)
{
if (p == nullptr)
return nullptr;
if (p->val < l)
{
p->left = nullptr;
return p = innerTrim(p->right, l, r);
}
else if (p->val > r)
{
p->right = nullptr;
return p = innerTrim(p->left, l, r);
}
else
{
p->left = innerTrim(p->left, l, r);
p->right = innerTrim(p->right, l, r);
return p;
}
}

Version-2:

TreeNode *trimBST(TreeNode *root, int L, int R)
{
innerTrim2(root, L, R);
return root;
}
void innerTrim2(TreeNode *&p, int l, int r)
{
if (p == nullptr)
return;
if (p->val < l)
{
p->left = nullptr, p = p->right;
innerTrim2(p, l, r);
return;
}
else if (p->val > r)
{
p->right = nullptr, p = p->left;
innerTrim2(p, l, r);
return;
}
else
{
innerTrim2(p->left, l, r);
innerTrim2(p->right, l, r);
}
}

Second Minimum Node In a Binary Tree

Question[671]: Given a non-empty special binary tree consisting of nodes with the non-negative value, where each node in this tree has exactly two or zero sub-node. If the node has two sub-nodes, then this node's value is the smaller value among its two sub-nodes. More formally, the property root.val = min(root.left.val, root.right.val) always holds. Given such a binary tree, you need to output the second minimum value in the set made of all the nodes' value in the whole tree. If no such second minimum value exists, output -1 instead.

Example-1

Input:
2
/ \
2 5
/ \
5 7 Output: 5
Explanation: The smallest value is 2, the second smallest value is 5.

Solution

The smallest value in the tree is root->val (at level-0) . Hence the solution is to find the smallest value in all numbers greater (at level >= 1) than root->val.

class Solution
{
public:
int findSecondMinimumValue(TreeNode *root)
{
if (root == nullptr || root->left == nullptr)
return -1;
int minval = root->val;
int result = -1;
queue<TreeNode *> q;
auto p = root;
q.push(p);
while (!q.empty())
{
p = q.front();
q.pop();
if (p->val > minval)
result = result == -1 ? p->val : min(result, p->val);
if (p->left)
q.push(p->left);
if (p->right)
q.push(p->right);
}
return result;
}
};

Search in a Binary Search Tree

Question[700]: Given the root node of a binary search tree (BST) and a value. You need to find the node in the BST that the node's value equals the given value. Return the subtree rooted with that node. If such node doesn't exist, you should return NULL.

Example

Given the tree:
4
/ \
2 7
/ \
1 3
And the value to search: 2
2
/ \
1 3

Solution

Simple question!

class Solution
{
public:
TreeNode *searchBST(TreeNode *root, int val)
{
return iterationSearch(root, val);
}
TreeNode *recursionSearch(TreeNode *p, int val)
{
if (p == nullptr)
return nullptr;
if (p->val == val)
return p;
else if (val < p->val)
return recursionSearch(p->left, val);
else
return recursionSearch(p->right, val);
}
TreeNode *iterationSearch(TreeNode *root, int val)
{
auto p = root;
while (p != nullptr)
{
if (p->val == val)
return p;
else if (val < p->val)
p = p->left;
else
p = p->right;
}
return nullptr;
}
};

N-ary Tree

Maximum Depth of N-ary Tree

Question[559]: Given a n-ary tree, find its maximum depth. The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node. Nary-Tree input serialization is represented in their level order traversal, each group of children is separated by the null value (See examples).

Example

Input: root = [1,null,3,2,4,null,5,6]
1
/ | \
3 2 4
/ \
5 6
Output: 3

Solution

Level order traversal.

#include "leetcode.h"
#include <queue>
class Node
{
public:
int val;
vector<Node *> children;
Node() {}
Node(int _val) { val = _val; }
Node(int _val, vector<Node *> _children)
{
val = _val;
children = _children;
}
};
class Solution
{
public:
int maxDepth(Node *root)
{
return levelorder(root);
}
int levelorder(Node *root)
{
auto p = root;
queue<Node *> q;
q.push(p);
int level = 1;
while (!q.empty())
{
queue<Node *> nextlevel;
while (!q.empty())
{
p = q.front(), q.pop();
for (auto x : p->children)
nextlevel.push(x);
}
level += (!nextlevel.empty());
q = nextlevel;
}
return level;
}
};

N-ary Tree Preorder Traversal

Question[589]: Given an n-ary tree, return the preorder traversal of its nodes' values.

Example

Input: root = [1,null,3,2,4,null,5,6]
1
/ | \
3 2 4
/ \
5 6
Output: [1,3,5,6,2,4]

Solution

First step, we should have a look at perorder traversal of a binary tree, which is similar to open the door of fridge.

stack s;
s.push(root);
while (!s.empty())
{
p = s.top(), s.pop();
print(p->val);
if (p->right) s.push(p->right);
if (p->left) s.push(p->left);
}

Second, put the elephant

[leetcode] 树(Ⅱ)的更多相关文章

  1. LeetCode树专题

    LeetCode树专题 98. 验证二叉搜索树 二叉搜索树,每个结点的值都有一个范围 /** * Definition for a binary tree node. * struct TreeNod ...

  2. leetcode 树类型题

    树的测试框架: // leetcodeTree.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream& ...

  3. leetcode: 树

    1. sum-root-to-leaf-numbers Given a binary tree containing digits from0-9only, each root-to-leaf pat ...

  4. [leetcode] 树 -Ⅰ

    均为 Simple 难度的水题. 二叉树的中序遍历 题目[94]:给定一个二叉树,返回它的中序 遍历. 解题思路:Too simple. class Solution { public: vector ...

  5. Leetcode 树(102, 637)

    637: 二叉树的层平均值 给定一个非空二叉树,返回一个由每层节点平均值组成的数组: https://leetcode-cn.com/problems/average-of-levels-in-bin ...

  6. leetcode树专题894.897,919,951

    满二叉树是一类二叉树,其中每个结点恰好有 0 或 2 个子结点. 返回包含 N 个结点的所有可能满二叉树的列表. 答案的每个元素都是一个可能树的根结点. 答案中每个树的每个结点都必须有 node.va ...

  7. leetcode 树的锯齿形状遍历

    二叉树的锯齿形层次遍历     给定一个二叉树,返回其节点值的锯齿形层次遍历.(即先从左往右,再从右往左进行下一层遍历,以此类推,层与层之间交替进行). 例如:给定二叉树 [3,9,20,null,n ...

  8. Leetcode 树 Populating Next Right Pointers in Each Node II

    本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie Populating Next Right Pointers in Each Node II ...

  9. leetcode树相关

    目录 144前序遍历 94中序遍历(98验证二叉搜索树.230二叉搜索树中第K小的元素) 145后序遍历 102/107层次遍历(104二叉树最大深度.103 105从前序与中序遍历序列构造二叉树 1 ...

随机推荐

  1. Spring配置cache(concurrentHashMap,guava cache、redis实现)附源码

    在应用程序中,数据一般是存在数据库中(磁盘介质),对于某些被频繁访问的数据,如果每次都访问数据库,不仅涉及到网络io,还受到数据库查询的影响:而目前通常会将频繁使用,并且不经常改变的数据放入缓存中,从 ...

  2. 使用 Redis 如何实现查询附近的人?「视频版」——面试突击 003 期

    面试问题 Redis 如何实现查询附近的人? 涉及知识点 Redis 中如何操作位置信息? GEO 底层是如何实现的? 如何在程序实现查询附近的人? 在实际使用中需要注意哪些问题? 视频答案 视频地址 ...

  3. 2019-2020-2 20175226 王鹏雲 网络对抗技术 Exp2 后门原理与实践

    2019-2020-2 20175226 王鹏雲 网络对抗技术 Exp2 后门原理与实践 实验内容 使用netcat获取主机操作Shell,cron启动: 使用socat获取主机操作Shell, 任务 ...

  4. chrome安装扩展插件出现-crx_header_invalid问题

    1. 将*.crx文件重命名为*.rar 2.将rar文件解压 3. 在chrome浏览器添加扩展程序时选择“加载已解压的扩展程序” 4.添加成功

  5. 为企业提供存储功能的Red Hat Stratis 2.0.1发布了

    导读 Red Hat的Stratis存储项目用于在Linux上提供企业存储功能,以与ZFS和Btrfs之类的产品竞争,同时在LVM和XFS之上构建,这是其2020年守护进程的首次更新. 通过Strat ...

  6. 一键配置openstack-cata版的在线yum源

    下面脚本可以直接复制来配置openstack-ocata版的yum源: echo "nameserver 8.8.8.8 nameserver 119.29.29.29 nameserver ...

  7. Element UI中的上传文件功能

    上传文件给后台: <el-upload style="display:inline-block" :limit=" class="upload-demo& ...

  8. windows git pull或者push代码时弹出安全框解决办法

    目录 1.打开控制面板->凭据管理器>删除已有的git凭证 2.新增一个凭证 @ 如果报如下错误: 1.打开控制面板->凭据管理器>删除已有的git凭证 2.新增一个凭证 网络 ...

  9. EPX-Studio调用Dll模块

    procedure TForm1.BitBtn1Click(Sender: TObject); var REP : IExcelPanelXDisp; modulePath:string; begin ...

  10. Natas6 Writeup(PHP Include)

    Natas6: 该题提供了php源码,点击查看分析,发现调用了includes/secret.inc页面,在输入一个变量secret后,如果和includes/secret.inc中 预设的secre ...