All questions are simple level.

Construct String from Binary Tree

Question[606]:You need to construct a string consists of parenthesis and integers from a binary tree with the preorder traversing way. The null node needs to be represented by empty parenthesis pair "()". And you need to omit all the empty parenthesis pairs that don't affect the one-to-one mapping relationship between the string and the original binary tree.

Example

Input: Binary tree: [1,2,3,4]
1
/ \
2 3
/
4
Output: "1(2(4))(3)"
Explanation: Originallay it needs to be "1(2(4)())(3()())", but you need to omit all the unnecessary empty parenthesis pairs. And it will be "1(2(4))(3)".

Solution

Use pre-order traversal. These two methods is the same. The first one is implemented by passing arguments by reference. The second one is implemented by returned value.

class Solution
{
public:
string tree2str(TreeNode *t)
{
// string s = "";
// preorder(t, s);
// return s;
return preorder2(t);
} void preorder(TreeNode *p, string &s)
{
if (p == nullptr)
return;
string sval = to_string(p->val);
string l, r;
preorder(p->left, l);
preorder(p->right, r);
s += sval;
bool lflag = (l != "");
bool rflag = (r != "");
if (lflag && rflag)
s += "(" + l + ")(" + r + ")";
if (!lflag && rflag)
s += "()(" + r + ")";
if (lflag && !rflag)
s += "(" + l + ")";
} string preorder2(TreeNode *p)
{
if (p == nullptr)
return "";
bool l = (p->left != nullptr);
bool r = (p->right != nullptr);
string sval = to_string(p->val);
if (l && r)
return sval + "(" + preorder2(p->left) + ")(" + preorder2(p->right) + ")";
if (!l && r)
return sval + "()(" + preorder2(p->right) + ")";
if (l && !r)
return sval + "(" + preorder2(p->left) + ")";
return sval;
}
};

Merge Two Binary Trees

Question[617]: Given two binary trees and imagine that when you put one of them to cover the other, some nodes of the two trees are overlapped while the others are not. You need to merge them into a new binary tree. The merge rule is that if two nodes overlap, then sum node values up as the new value of the merged node. Otherwise, the NOT null node will be used as the node of new tree.

Solution: Two versions, including recursion and iteration.

  • Recursion version-1: create a completely new tree

    class Solution
    {
    public:
    TreeNode *mergeTrees(TreeNode *t1, TreeNode *t2)
    {
    TreeNode *root = nullptr;
    innerMerge(root, t1, t2);
    return root;
    }
    void innerMerge(TreeNode *&p, TreeNode *t1, TreeNode *t2)
    {
    bool flag1 = (t1 != nullptr);
    bool flag2 = (t2 != nullptr);
    if (flag1 && flag2)
    p = new TreeNode(t1->val + t2->val);
    else if (!flag1 && flag2)
    p = new TreeNode(t2->val);
    else if (flag1 && !flag2)
    p = new TreeNode(t1->val);
    else
    return;
    innerMerge(p->left, flag1 ? t1->left : nullptr, flag2 ? t2->left : nullptr);
    innerMerge(p->right, flag1 ? t1->right : nullptr, flag2 ? t2->right : nullptr);
    }
    };
  • Recursion version-2: directly modify on t1

    class Solution
    {
    public:
    TreeNode *mergeTrees(TreeNode *t1, TreeNode *t2)
    {
    return innerMerge(t1, t2);
    } TreeNode *innerMerge(TreeNode *t1, TreeNode *t2)
    {
    if (t1 == nullptr)
    return t2;
    if (t2 == nullptr)
    return t1;
    t1->val += t2->val;
    t1->left = innerMerge(t1->left, t2->left);
    t1->right = innerMerge(t1->right, t2->right);
    return t1;
    }
    };
  • Iteration-version implemented by pre-order traversal, modify on t1 :

    TreeNode *mergeTrees(TreeNode *t1, TreeNode *t2)
    {
    return preorderMerge(t1, t2);
    }
    TreeNode *preorderMerge(TreeNode *t1, TreeNode *t2)
    {
    typedef pair<TreeNode *, TreeNode *> node;
    if (t1 == nullptr)
    return t2;
    stack<node> s;
    s.push(node(t1, t2));
    while (!s.empty())
    {
    node n = s.top();
    s.pop();
    if (n.second == nullptr)
    continue;
    n.first->val += n.second->val;
    if (n.first->left == nullptr)
    n.first->left = n.second->left;
    else
    s.push(node(n.first->left, n.second->left));
    if (n.first->right == nullptr)
    n.first->right = n.second->right;
    else
    s.push(node(n.first->right, n.second->right));
    }
    return t1;
    }

Average of Levels in Binary Tree

Question[637]: Given a non-empty binary tree, return the average value of the nodes on each level in the form of an array.

Example

Input:
3
/ \
9 20
/ \
15 7
Output: [3, 14.5, 11]
Explanation: The average value of nodes on level 0 is 3, on level 1 is 14.5, and on level 2 is 11. Hence return [3, 14.5, 11].

Solution

  • Level-order traversal. Use the map sumrecord to record the sum of each level. Use numrecord to record the number of nodes of each level.

    vector<double> averageOfLevels(TreeNode *root)
    {
    typedef pair<TreeNode *, int> node;
    unordered_map<int, double> sumrecord;
    unordered_map<int, int> numrecord;
    queue<node> q;
    q.push(node(root, 0));
    while (!q.empty())
    {
    auto n = q.front();
    q.pop();
    sumrecord[n.second] += n.first->val;
    numrecord[n.second]++;
    if (n.first->left != nullptr)
    q.push(node(n.first->left, n.second + 1));
    if (n.first->right != nullptr)
    q.push(node(n.first->right, n.second + 1));
    }
    vector<double> v(numrecord.size());
    for (auto &x : sumrecord)
    v[x.first] = x.second / numrecord[x.first];
    return v;
    }
  • Level-order traversal. Only use queue, discard the help of node and unordered_map.

    vector<double> levelorder(TreeNode *root)
    {
    vector<double> v;
    queue<TreeNode *> q;
    q.push(root);
    while (!q.empty())
    {
    queue<TreeNode *> nextlevel;
    int64_t sum = 0;
    int counter = 0;
    while (!q.empty())
    {
    auto p = q.front();
    q.pop();
    sum += p->val, counter++;
    if (p->left != nullptr)
    nextlevel.push(p->left);
    if (p->right != nullptr)
    nextlevel.push(p->right);
    }
    q = nextlevel;
    v.push_back(sum * 1.0 / counter);
    }
    return v;
    }

Two Sum IV - Input is a BST

Question[653]: Given a Binary Search Tree and a target number, return true if there exist two elements in the BST such that their sum is equal to the given target.

Example

Input:
5
/ \
3 6
/ \ \
2 4 7
Target = 9
Output: True
Explanation: 9 = 3+6, 9 = 2+7, 9 = 4+5

Solution

First, implement a function named search(root, val) which is used to search val in a tree root. Then, traversal the tree root to judge every node p whether there is another node q satisfies p->val + q->val == k.

bool search(TreeNode *p, int val, TreeNode *exceptNode)
{
if (p == nullptr)
return false;
if (p->val == val && p != exceptNode)
return true;
if (val < p->val)
return search(p->left, val, exceptNode);
return search(p->right, val, exceptNode);
}
bool levelorder(TreeNode *root, int k)
{
queue<TreeNode *> q;
q.push(root);
while (!q.empty())
{
auto p = q.front();
q.pop();
int val = k - p->val;
if (search(root, val, p))
return true;
if (p->left != nullptr)
q.push(p->left);
if (p->right != nullptr)
q.push(p->right);
}
return false;
}

Trim a Binary Search Tree

Question[669]: Given a binary search tree and the lowest and highest boundaries as L and R, trim the tree so that all its elements lies in [L, R] (R >= L). You might need to change the root of the tree, so the result should return the new root of the trimmed binary search tree.

Example-1

Input-1:
1
/ \
0 2
L = 1
R = 2
Output-1:
1
\
2

Example-2

Input-2:
3
/ \
0 4
\
2
/
1
L = 1
R = 3
Output-2:
3
/
2
/
1

Solution

For each node of a BST, there are only three cases:

  1. val < L
  2. val > R
  3. L <= val <= R

When val < L, for an example:

   parent            parent          parent
| | |
9 ==> 9 ==> right
/ \ / \
left right null right

All values in the left sub-tree should be less than 9, hence the left sub-tree should be discarded. And because of '9' is less than L, hence it also should be discarded. The code to do these two operations is:

p->left = nullptr, p = trim(p->right)

The case val > R is similar to case val < L.

For the case L <= val <= R, there is nothing to do on the val node. Just continue to trim on its left sub-tree and right sub-tree.

Version-1:

TreeNode *trimBST(TreeNode *root, int L, int R)
{
return innerTrim(root, L, R);
}
TreeNode *innerTrim(TreeNode *&p, int l, int r)
{
if (p == nullptr)
return nullptr;
if (p->val < l)
{
p->left = nullptr;
return p = innerTrim(p->right, l, r);
}
else if (p->val > r)
{
p->right = nullptr;
return p = innerTrim(p->left, l, r);
}
else
{
p->left = innerTrim(p->left, l, r);
p->right = innerTrim(p->right, l, r);
return p;
}
}

Version-2:

TreeNode *trimBST(TreeNode *root, int L, int R)
{
innerTrim2(root, L, R);
return root;
}
void innerTrim2(TreeNode *&p, int l, int r)
{
if (p == nullptr)
return;
if (p->val < l)
{
p->left = nullptr, p = p->right;
innerTrim2(p, l, r);
return;
}
else if (p->val > r)
{
p->right = nullptr, p = p->left;
innerTrim2(p, l, r);
return;
}
else
{
innerTrim2(p->left, l, r);
innerTrim2(p->right, l, r);
}
}

Second Minimum Node In a Binary Tree

Question[671]: Given a non-empty special binary tree consisting of nodes with the non-negative value, where each node in this tree has exactly two or zero sub-node. If the node has two sub-nodes, then this node's value is the smaller value among its two sub-nodes. More formally, the property root.val = min(root.left.val, root.right.val) always holds. Given such a binary tree, you need to output the second minimum value in the set made of all the nodes' value in the whole tree. If no such second minimum value exists, output -1 instead.

Example-1

Input:
2
/ \
2 5
/ \
5 7 Output: 5
Explanation: The smallest value is 2, the second smallest value is 5.

Solution

The smallest value in the tree is root->val (at level-0) . Hence the solution is to find the smallest value in all numbers greater (at level >= 1) than root->val.

class Solution
{
public:
int findSecondMinimumValue(TreeNode *root)
{
if (root == nullptr || root->left == nullptr)
return -1;
int minval = root->val;
int result = -1;
queue<TreeNode *> q;
auto p = root;
q.push(p);
while (!q.empty())
{
p = q.front();
q.pop();
if (p->val > minval)
result = result == -1 ? p->val : min(result, p->val);
if (p->left)
q.push(p->left);
if (p->right)
q.push(p->right);
}
return result;
}
};

Search in a Binary Search Tree

Question[700]: Given the root node of a binary search tree (BST) and a value. You need to find the node in the BST that the node's value equals the given value. Return the subtree rooted with that node. If such node doesn't exist, you should return NULL.

Example

Given the tree:
4
/ \
2 7
/ \
1 3
And the value to search: 2
2
/ \
1 3

Solution

Simple question!

class Solution
{
public:
TreeNode *searchBST(TreeNode *root, int val)
{
return iterationSearch(root, val);
}
TreeNode *recursionSearch(TreeNode *p, int val)
{
if (p == nullptr)
return nullptr;
if (p->val == val)
return p;
else if (val < p->val)
return recursionSearch(p->left, val);
else
return recursionSearch(p->right, val);
}
TreeNode *iterationSearch(TreeNode *root, int val)
{
auto p = root;
while (p != nullptr)
{
if (p->val == val)
return p;
else if (val < p->val)
p = p->left;
else
p = p->right;
}
return nullptr;
}
};

N-ary Tree

Maximum Depth of N-ary Tree

Question[559]: Given a n-ary tree, find its maximum depth. The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node. Nary-Tree input serialization is represented in their level order traversal, each group of children is separated by the null value (See examples).

Example

Input: root = [1,null,3,2,4,null,5,6]
1
/ | \
3 2 4
/ \
5 6
Output: 3

Solution

Level order traversal.

#include "leetcode.h"
#include <queue>
class Node
{
public:
int val;
vector<Node *> children;
Node() {}
Node(int _val) { val = _val; }
Node(int _val, vector<Node *> _children)
{
val = _val;
children = _children;
}
};
class Solution
{
public:
int maxDepth(Node *root)
{
return levelorder(root);
}
int levelorder(Node *root)
{
auto p = root;
queue<Node *> q;
q.push(p);
int level = 1;
while (!q.empty())
{
queue<Node *> nextlevel;
while (!q.empty())
{
p = q.front(), q.pop();
for (auto x : p->children)
nextlevel.push(x);
}
level += (!nextlevel.empty());
q = nextlevel;
}
return level;
}
};

N-ary Tree Preorder Traversal

Question[589]: Given an n-ary tree, return the preorder traversal of its nodes' values.

Example

Input: root = [1,null,3,2,4,null,5,6]
1
/ | \
3 2 4
/ \
5 6
Output: [1,3,5,6,2,4]

Solution

First step, we should have a look at perorder traversal of a binary tree, which is similar to open the door of fridge.

stack s;
s.push(root);
while (!s.empty())
{
p = s.top(), s.pop();
print(p->val);
if (p->right) s.push(p->right);
if (p->left) s.push(p->left);
}

Second, put the elephant

[leetcode] 树(Ⅱ)的更多相关文章

  1. LeetCode树专题

    LeetCode树专题 98. 验证二叉搜索树 二叉搜索树,每个结点的值都有一个范围 /** * Definition for a binary tree node. * struct TreeNod ...

  2. leetcode 树类型题

    树的测试框架: // leetcodeTree.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream& ...

  3. leetcode: 树

    1. sum-root-to-leaf-numbers Given a binary tree containing digits from0-9only, each root-to-leaf pat ...

  4. [leetcode] 树 -Ⅰ

    均为 Simple 难度的水题. 二叉树的中序遍历 题目[94]:给定一个二叉树,返回它的中序 遍历. 解题思路:Too simple. class Solution { public: vector ...

  5. Leetcode 树(102, 637)

    637: 二叉树的层平均值 给定一个非空二叉树,返回一个由每层节点平均值组成的数组: https://leetcode-cn.com/problems/average-of-levels-in-bin ...

  6. leetcode树专题894.897,919,951

    满二叉树是一类二叉树,其中每个结点恰好有 0 或 2 个子结点. 返回包含 N 个结点的所有可能满二叉树的列表. 答案的每个元素都是一个可能树的根结点. 答案中每个树的每个结点都必须有 node.va ...

  7. leetcode 树的锯齿形状遍历

    二叉树的锯齿形层次遍历     给定一个二叉树,返回其节点值的锯齿形层次遍历.(即先从左往右,再从右往左进行下一层遍历,以此类推,层与层之间交替进行). 例如:给定二叉树 [3,9,20,null,n ...

  8. Leetcode 树 Populating Next Right Pointers in Each Node II

    本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie Populating Next Right Pointers in Each Node II ...

  9. leetcode树相关

    目录 144前序遍历 94中序遍历(98验证二叉搜索树.230二叉搜索树中第K小的元素) 145后序遍历 102/107层次遍历(104二叉树最大深度.103 105从前序与中序遍历序列构造二叉树 1 ...

随机推荐

  1. 关于使用Binlog和canal来对MySQL的数据写入进行监控

    先说下Binlog和canal是什么吧. 1.Binlog是mysql数据库的操作日志,当有发生增删改查操作时,就会在data目录下生成一个log文件,形如mysql-bin.000001,mysql ...

  2. Iterator接口(遍历器)和for/of循环

    在javascript中表示“集合”的数据结构,主要有Array,Object,Map,Set. Iterator(遍历器)接口是为各种不同的数据结构提供了统一的访问机制.任何数据结构具有Iterat ...

  3. seo搜索优化教程13-SEO搜索引擎站点收录

    为了使大家更方便的了解及学习网络营销推广.seo搜索优化,星辉科技强势推出seo搜索优化教程.此为seo教程第13课 想要用户能够在搜索引擎中通过关键词搜索到您的页面信息,首先要做的是让搜索引擎收录您 ...

  4. JVM笔记-Java技术体系与JVM概述

    1. 简述 Java 不仅仅是一门编程语言,还是一个由一系列计算机软件和规范组成的技术体系. Java 的广告词为 "一次编写,到处运行",之所以能够做到"跨平台&quo ...

  5. [CSP初赛] 组合数学的三个技巧以及从另一方面思考组合类问题

    也不知道老师讲不讲 话说好久没有水博客了,看了一点\(python\)然后就去搞文化课了 正好网课讲到组合数学,然后觉得还蛮难的(其实是我变菜了),就想到了以前的\(csp\)的组合数学基础 果然被我 ...

  6. tempdb 日志文件增长的问题

    前两天在一个客户那里发现tempdb log 文件增长很大,已经使用40GB了,而tempdb log 文件总的分配空间是70GB,并且日志空间貌似不能重用,他们使用sql 2012 打的sp4补丁, ...

  7. Gorm 预加载及输出处理(三)- 自定义时间格式

    前言 Gorm 中 time.Time 类型的字段在 JSON 序列化后呈现的格式为 "2020-03-11T18:26:13+08:00",在 Go 标准库文档 - time 的 ...

  8. 深度学习归一化:BN、GN与FRN

    在深度学习中,使用归一化层成为了很多网络的标配.最近,研究了不同的归一化层,如BN,GN和FRN.接下来,介绍一下这三种归一化算法. BN层 BN层是由谷歌提出的,其相关论文为<Batch No ...

  9. Fiddler5 发送HTTP请求

    1.Fiddler Composer发送HTTP请求 Composer的编辑模式主要有2种:Parsed模式和Raw模式. 实例1:Composer发送get请求 实例2:Composer发送post ...

  10. ES6编译问题SyntaxError: Unexpected token import

    遇到SyntaxError: Unexpected token import 如何解决 ??? 究其原因是node es6问题这还不够,因为我们没有去配置babel,所以我们需要在.babelrc去做 ...