比较简单的倍增

但还是看了题解才会

题意

给出一个 \(n\times m\) 的网格,每个格子有颜色,\(0\) 黑 \(1\) 白,每个格子还有一个方向,表示这个格子上的机器人会向那个方向走,并保证不会走出格子

摆放机器人,它们同时开始运动,在任意时刻不能有两个机器人在同一个格子里

先最大化机器人个数,如果多种方案机器人个数相等,再最大化摆在黑格子里的机器人数量


首先,这个路线肯定是循环的,如果不循环,就会走到无限多个格子,不合理

然后,对于任意一个格子,从那里开始走到完成一个完整的循环,步数肯定小于等于 \(nm\),显然它不能走了比 \(nm\) 还多的格子仍然不开始循环

而对于两个不同的循环,它们一定没有交点(就是一个相同的格子),如果有,肯定就不会行成两个循环了

如果有两个机器人分别走了至少 \(nm\) 步,那么它们肯定已经各子循环了一次或以上了

所以,如果它们不在同一个循环,显然不会相遇

如果在一个循环,且没有在 \(nm\) 步内相遇,说明这时它们已经“同步”了,就是会一直保持这一个距离不断的走,永不相遇

当然,如果在 \(nm\) 步之前就已经相遇,那么它们会一直一起走,不会有影响

至此,我们判断两个格子上的机器人是否会相遇的方法,就是看它们走了 \(nm\) 步以后,是不是在同一个格子

所以,假设我们在所有格子都摆上机器人,让他们走,一旦有几个相遇了,就说明我们要去掉这些机器人只剩下其中的一个

这时,给这 \(nm\) 个点编号 \(1\ldots nm\),并用\(white_i,black_i\)表示的分别是有没有从白/黑格出发的机器人,\(nm\) 格后会走到这里

然后从 \(1\) 到 \(nm\) 统计答案,如果某个格子可以由黑色格子中的机器人走来,就保留黑色格子的那个,否则任意保留

就可以计算出答案了

对于走 \(nm\) 步那个操作,就要用倍增实现

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<map>
#include<iomanip>
#include<cstring>
#define reg register
#define EN std::puts("")
#define LL long long
inline int read(){
register int x=0;register int y=1;
register char c=std::getchar();
while(c<'0'||c>'9'){if(c=='-') y=0;c=std::getchar();}
while(c>='0'&&c<='9'){x=x*10+(c^48);c=std::getchar();}
return y?x:-x;
}
int black[1000006],white[1000005];
int nex[24][1000006];
int color[1000006];
char s[1000006];
int main(){int T=read();while(T--){
int n=read(),m=read();
for(reg int i=1;i<=n;i++){
std::scanf("%s",s+1);
for(reg int j=1;j<=m;j++) color[(i-1)*m+j]=s[j]=='0'?0:1;
}
for(reg int i=1;i<=n;i++){
std::scanf("%s",s+1);
for(reg int j=1;j<=m;j++){
int now=(i-1)*m+j;
if(s[j]=='U') nex[0][now]=now-m;
else if(s[j]=='D') nex[0][now]=now+m;
else if(s[j]=='L') nex[0][now]=now-1;
else nex[0][now]=now+1;
}
}
n*=m;
for(reg int i=1;i<=20;i++)
for(reg int j=1;j<=n;j++) nex[i][j]=nex[i-1][nex[i-1][j]];
for(reg int j=1;j<=n;j++){
int to=j;
for(reg int i=20;~i;i--){//倒着循环,倍增传统套路,不过想想也能知道,要先走大的步数
if((1<<i)&n) to=nex[i][to];
}
color[j]?white[to]=1:black[to]=1;
}
int ans=0,black_num=0;
for(reg int i=1;i<=n;i++)
if(black[i]) black_num++,ans++,black[i]=white[i]=0;
else if(white[i]) ans++,black[i]=white[i]=0;
std::printf("%d %d\n",ans,black_num);
}
return 0;
}

CF1335F Robots on a Grid的更多相关文章

  1. Robots on a grid(DP+bfs())

    链接:http://www.bnuoj.com/bnuoj/problem_show.php?pid=25585 Current Server Time: 2013-08-27 20:42:26 Ro ...

  2. Map-making Robots: A Review of the Occupancy Grid Map Algorithm

    栅格地图算法:http://www.ikaros-project.org/articles/2008/gridmaps/

  3. WPF Wonders: Transformations (and Robots!)

    indows Presentation Framework (WPF) gets a lot of mileage out of being layered on top of DirectX, in ...

  4. POJ 1548 Robots (Dilworth)

    Robots Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 3621 Accepted: 1643 Description Yo ...

  5. hdu6229 Wandering Robots 2017沈阳区域赛M题 思维加map

    题目传送门 题目大意: 给出一张n*n的图,机器人在一秒钟内任一格子上都可以有五种操作,上下左右或者停顿,(不能出边界,不能碰到障碍物).题目给出k个障碍物,但保证没有障碍物的地方是强联通的,问经过无 ...

  6. CH6802 車的放置 和 CH6B24 Place the Robots

    6802 車的放置 0x60「图论」例题 描述 给定一个N行M列的棋盘,已知某些格子禁止放置.问棋盘上最多能放多少个不能互相攻击的車.車放在格子里,攻击范围与中国象棋的"車"一致. ...

  7. ZOJ 1654 Place the Robots(最大匹配)

    Robert is a famous engineer. One day he was given a task by his boss. The background of the task was ...

  8. ZOJ 1654--Place the Robots【二分匹配 &amp;&amp; 经典建图】

    Place the Robots Time Limit: 5 Seconds      Memory Limit: 32768 KB Robert is a famous engineer. One ...

  9. gym 100971 J Robots at Warehouse

    Vitaly works at the warehouse. The warehouse can be represented as a grid of n × m cells, each of wh ...

随机推荐

  1. matplotlib BlendedAffine2D 和 CompositeAffine2D

    2020-04-11 10:00:01 --Edit by yangrayBlendedAffine2D 继承于Affine2DBase,支持x和y方向使用不同的仿射变换策略.(自译:混合仿射变换)C ...

  2. VirtualBox的四种网络连接方式【转】

    VirtualBox中有4中网络连接方式: NAT Bridged Adapter Internal Host-only Adapter VMWare中有三种,其实他跟VMWare 的网络连接方式都是 ...

  3. 【python实现卷积神经网络】全连接层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  4. Android传感器--光照传感器使用

    Android 设备中有许多传感器,其中有一个传感器控制着你屏幕亮度的变化.当你在很暗的地方使用手机,你设备的屏幕会自动调暗,从而保护你眼睛. 起着这样作用,Android是通过一款光照传感器来获取你 ...

  5. 使用原生js实现选项卡功能实例教程

    选项卡是前端常见的基本功能,它是用多个标签页来区分不同内容,通过选择标签快速切换内容.学习本教程之前,读者需要具备html和css技能,同时需要有简单的javascript基础. 先来完成html部分 ...

  6. C++关于容器vector的使用方法以及#ifdef #else #endif #if #ifndef 的使用

    //此处根据0还是1来判断具体使用那一段主函数 #if 1 #define WAY #endif #ifdef WAY #include <iostream> #include<st ...

  7. ASE课程总结 by 林建平

    设想和目标 1. 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 我们的辅助用户在阅读英文文献时记忆生词,提高用户的生词量,减少用户的阅读障碍.定义非常清晰,要有查 ...

  8. C - Mind Control CodeForces - 1291C

    菜到家了,题意都读不懂. 题目大意: 总共有n个人和n个数字 n个人拍成一队,n个数字也是有顺序的 你排在第m个位置 按照顺序的每个人可以拿走这个序列中的第一个数字或者最后一个数字 你可以在所有人操作 ...

  9. el-tab-pane label的文字内容怎样设间距

    el-tab-pane label的文字内容怎样设间距 问题描述: 在使用element-ui的el-tab-pane做标签页时,label属性的位置与样式不能通过style样式直接解决 百度后几乎没 ...

  10. JAVA快速排序代码实现

    通过一趟排序将要排序的数据分割成独立的两部分:分割点左边都是比它小的数,右边都是比它大的数.然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列. 快速 ...