列表
classmates = ['Michael', 'Bob', 'Tracy']
classmates.append('tom')
print classmates
# classmates.insert(7,'tom1')
classmates.pop(0)
classmates[0]='mark'
print classmates

>>> p = ['asp', 'php']
>>> s = ['python', 'java', p, 'scheme']
要拿到'php'可以写p[1]或者s[2][1],因此s可以看成是一个二维数组,类似的还有三维、四维……数组,

元组
现在,classmates这个tuple不能变了,它也没有append(),insert()这样的方法。其他获取元素的方法和list是一样的,你可以正常地使用classmates[0],classmates[-1],但不能赋值成另外的元素。
不可变的tuple有什么意义?因为tuple不可变,所以代码更安全。如果可能,能用tuple代替list就尽量用tuple。
只有1个元素的tuple定义时必须加一个逗号,,来消除歧义:
>>> t = (1,)
>>> t
(1,)

判断
if <条件判断1>:
<执行1>
elif <条件判断2>:
<执行2>
elif <条件判断3>:
<执行3>
else:
<执行4>

if语句执行有个特点,它是从上往下判断,如果在某个判断上是True,把该判断对应的语句执行后,就忽略掉剩下的elif和else
if判断条件还可以简写,比如写:
if x:
print 'True'
只要x是非零数值、非空字符串、非空list等,就判断为True,否则为False。
从raw_input()读取的内容永远以字符串的形式返回,把字符串和整数比较就不会得到期待的结果,必须先用int()把字符串转换为我们想要的整型

字典
要避免key不存在的错误,有两种办法,一是通过in判断key是否存在:
>>> 'Thomas' in d
False
二是通过dict提供的get方法,如果key不存在,可以返回None,或者自己指定的value:
>>> d.get('Thomas')
>>> d.get('Thomas', -1)
-1
注意:返回None的时候Python的交互式命令行不显示结果。
请务必注意,dict内部存放的顺序和key放入的顺序是没有关系的。
和list比较,dict有以下几个特点:
1. 查找和插入的速度极快,不会随着key的增加而增加;
2. 需要占用大量的内存,内存浪费多。
而list相反:
3. 查找和插入的时间随着元素的增加而增加;
4. 占用空间小,浪费内存很少。
所以,dict是用空间来换取时间的一种方法。
dict可以用在需要高速查找的很多地方,在Python代码中几乎无处不在,正确使用dict非常重要,需要牢记的第一条就是dict的key必须是不可变对象。
这是因为dict根据key来计算value的存储位置,如果每次计算相同的key得出的结果不同,那dict内部就完全混乱了。这个通过key计算位置的算法称为哈希算法(Hash)。
要保证hash的正确性,作为key的对象就不能变。在Python中,字符串、整数等都是不可变的,因此,可以放心地作为key。而list是可变的,就不能作为key:

空函数
如果想定义一个什么事也不做的空函数,可以用pass语句:
def nop():
pass
pass语句什么都不做,那有什么用?实际上pass可以用来作为占位符,比如现在还没想好怎么写函数的代码,就可以先放一个pass,让代码能运行起来。
pass还可以用在其他语句里,比如:
if age >= 18:
pass
缺少了pass,代码运行就会有语法错误。
函数的参数

Python的函数定义非常简单,但灵活度却非常大。除了正常定义的必选参数外,还可以使用默认参数、可变参数和关键字参数,使得函数定义出来的接口,不但能处理复杂的参数,还可以简化调用者的代码。
def power(x, n=2):
s = 1
while n > 0:
n = n - 1
s = s * x
return s

从上面的例子可以看出,默认参数可以简化函数的调用。设置默认参数时,有几点要注意:
一是必选参数在前,默认参数在后,否则Python的解释器会报错(思考一下为什么默认参数不能放在必选参数前面);
二是如何设置默认参数。
当函数有多个参数时,把变化大的参数放前面,变化小的参数放后面。变化小的参数就可以作为默认参数。
使用默认参数有什么好处?最大的好处是能降低调用函数的难度。
定义默认参数要牢记一点:默认参数必须指向不变对象!

为什么要设计str、None这样的不变对象呢?因为不变对象一旦创建,对象内部的数据就不能修改,这样就减少了由于修改数据导致的错误。此外,由于对象不变,多任务环境下同时读取对象不需要加锁,同时读一点问题都没有。我们在编写程序时,如果可以设计一个不变对象,那就尽量设计成不变对象。

# 定义可变参数,在参数前面加一个*,如果在给定的参数去调用可变参数在给定的参数前面加*,这样变成了可变参数,在调用
# def calc(*number):
# sum=0
# for n in number:
# sum+=n*n
# print sum
# return sum
#
# nums=[1,2,3]
# calc(*nums)

# # 关键字参数可变参数允许你传入0个或任意个参数,这些可变参数在函数调用时自动组装为一个tuple。而关键字参数允许你传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict。请看示例:
# def person(name, age, **kw):
# print 'name:', name, 'age:', age, 'other:', kw
#
# # person('jack', 18)
#
# # person('jack', 18, city='beijing', gender='M', job='Engineer')
# # 关键字参数有什么用?它可以扩展函数的功能。比如,在person函数里,我们保证能接收到name和age这两个参数,但是,如果调用者愿意提供更多的参数,我们也能收到。试想你正在做一个用户注册的功能,除了用户名和年龄是必填项外,其他都是可选项,利用关键字参数来定义这个函数就能满足注册的需求。
# kw={'city' :'beijing', 'job': 'Engineer'}
# person('mark', 18,**kw)

# 参数组合
'''
必选参数、默认参数、可变参数和关键字参数,这4种参数都可以一起使用,或者只用其中某些,但是请注意,参数定义的顺序必须是:必选参数、默认参数、可变参数和关键字参数。
'''
def func(a, b, c=0, *args, **kw):
print 'a=',a, 'b=',b, 'c=',c, 'args=', args, 'kw=', kw
#在函数调用的时候,Python解释器自动按照参数位置和参数名把对应的参数传进去
args=(1,2,3,4)
kw={'x':99}
func(*args,**kw)
小结
Python的函数具有非常灵活的参数形态,既可以实现简单的调用,又可以传入非常复杂的参数。
默认参数一定要用不可变对象,如果是可变对象,运行会有逻辑错误!
要注意定义可变参数和关键字参数的语法:
*args是可变参数,args接收的是一个tuple;
**kw是关键字参数,kw接收的是一个dict。
以及调用函数时如何传入可变参数和关键字参数的语法:
可变参数既可以直接传入:func(1, 2, 3),又可以先组装list或tuple,再通过*args传入:func(*(1, 2, 3));
关键字参数既可以直接传入:func(a=1, b=2),又可以先组装dict,再通过**kw传入:func(**{'a': 1, 'b': 2})。
使用*args和**kw是Python的习惯写法,当然也可以用其他参数名,但最好使用习惯用法。

递归函数
在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数
使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。可以试试fact(1000):

解决递归调用栈溢出的方法是通过尾递归优化,事实上尾递归和循环的效果是一样的,所以,把循环看成是一种特殊的尾递归函数也是可以的。
尾递归是指,在函数返回的时候,调用自身本身,并且,return语句不能包含表达式。这样,编译器或者解释器就可以把尾递归做优化,使递归本身无论调用多少次,都只占用一个栈帧,不会出现栈溢出的情况。
def fact(n):
return fact_iter(n, 1)
def fact_iter(num, product):
if num == 1:
return product
return fact_iter(num - 1, num * product)
尾递归调用时,如果做了优化,栈不会增长,因此,无论多少次调用也不会导致栈溢出。
遗憾的是,大多数编程语言没有针对尾递归做优化,Python解释器也没有做优化,所以,即使把上面的fact(n)函数改成尾递归方式,也会导致栈溢出。
迭代
所以,当我们使用for循环时,只要作用于一个可迭代对象,for循环就可以正常运行,而我们不太关心该对象究竟是list还是其他数据类型。
那么,如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:
>>> from collections import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False
如果要对list实现类似Java那样的下标循环怎么办?Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:
>>> for i, value in enumerate(['A', 'B', 'C']):
... print i, value
...
0 A
1 B
2 C

for x, y in [(1, 1), (2, 4), (3, 9)]:
... print x, y
...
1 1
2 4
3 9

列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。
写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来

生成器
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器(Generator)。
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:
# g=(x*x for x in xrange(10))
# for n in g:
# print n

#而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。
def fib(max):
n,a,b=0,0,1
while n<max:
yield b
a,b=b,a+b
n=n+1
for n in fib(6):
print n

廖大大python学习笔记1的更多相关文章

  1. 廖雪峰Python学习笔记——类和实例

    Class MyList(list): __metaclass__ = ListMetaclass #它表示在创建MyList这个类时,必须通过 ListMetaclass这个元类的LIstMetac ...

  2. 廖雪峰Python学习笔记——序列化

    序列化 定义:程序运行时所有变量都存在内存中,把变量从内存中变成可存储或可传输的过程称为序列化pickling,在其他语言中称为serialization,marshalling,flattening ...

  3. 廖雪峰Python学习笔记——使用元类

    元类(MetaClasses) 元类提供了一个改变Python类行为的有效方式. 元类的定义是“一个类的类”.任何实例是它自己的类都是元类. class demo(object): pass obj ...

  4. 近期Python学习笔记

    近期Python 学习笔记--一篇文入门python 作者:Pleiades_Antares(www.cnblogs.com/irischen) 写在前面的话 想学Python已经许久,一年多以前(应 ...

  5. python学习笔记整理——字典

    python学习笔记整理 数据结构--字典 无序的 {键:值} 对集合 用于查询的方法 len(d) Return the number of items in the dictionary d. 返 ...

  6. VS2013中Python学习笔记[Django Web的第一个网页]

    前言 前面我简单介绍了Python的Hello World.看到有人问我搞搞Python的Web,一时兴起,就来试试看. 第一篇 VS2013中Python学习笔记[环境搭建] 简单介绍Python环 ...

  7. python学习笔记之module && package

    个人总结: import module,module就是文件名,导入那个python文件 import package,package就是一个文件夹,导入的文件夹下有一个__init__.py的文件, ...

  8. python学习笔记(六)文件夹遍历,异常处理

    python学习笔记(六) 文件夹遍历 1.递归遍历 import os allfile = [] def dirList(path): filelist = os.listdir(path) for ...

  9. python学习笔记--Django入门四 管理站点--二

    接上一节  python学习笔记--Django入门四 管理站点 设置字段可选 编辑Book模块在email字段上加上blank=True,指定email字段为可选,代码如下: class Autho ...

随机推荐

  1. Unity LineRenderer制作画版

    Source: using System.Collections; using System.Collections.Generic; using UnityEngine; public class ...

  2. php实现快速排序和冒泡排序

    快速排序 实现思路:把第一个元素作为标记,依次判断后续的值,如果小于它则放在左边,如果大于它则放右边,同理把左右两部分看成一个整体一直递归,最后再数组拼接起来 它的最优时间复杂度为O(nlogn)[以 ...

  3. Python+selenium+pil+tesseract实现自动识别验证码

    一.环境搭建准备: 1.Python下载,安装以及环境配置 2.IDE pycharm 工具下载,安装 3.ie浏览器 4.selenium 5.pil:pil第三方库的下载,win下安装whl文件, ...

  4. python数据可视化——matplotlib 用户手册入门:pyplot 画图

    参考matplotlib官方指南: https://matplotlib.org/tutorials/introductory/pyplot.html#sphx-glr-tutorials-intro ...

  5. java使用jacob将office文档转换为PDF格式

    jacob 包下载地址: http://sourceforge.net/projects/jacob-project/ 下载后,将jacob 与 jacob-1.19-x64.dll放到安装jdk目录 ...

  6. VSCode打开已有vuejs项目

    转载自 https://blog.csdn.net/yoryky/article/details/78290443 下载安装并配置VSCode 随便百度上搜个最新的VSCode安装好后,点击Ctrl ...

  7. [Ubuntu] sogou中文输入法安装

    I install sogou 中文输入法 successfully, after following below steps: 1. install sogou pingyin by deb pac ...

  8. Scrum立会报告+燃尽图(十一月二十七日总第三十五次):β阶段最后完善

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2415 项目地址:https://git.coding.net/zhang ...

  9. 作业2-MathExam V2.0

    MathExam V2.0 一.预估与实际 PSP2.1 Personal Software Process Stages 预估耗时(分钟) 实际耗时(分钟) Planning 计划 20 50 • ...

  10. “我爱淘”第二冲刺阶段Scrum站立会议6

    完成任务: 完成学院分类的点击查看书籍功能,可以点击书的条目查看书的详细信息. 计划任务: 将书的详细信息进行完善,并且可以点击收藏以及已预订等功能. 遇到问题: 分类功能,根据不同学院,自动将数据库 ...