【HDU4652】Dice(数学期望,动态规划)

题面

Vjudge

有一个\(m\)面骰子

询问,连续出现\(n\)个相同的时候停止的期望

连续出现\(n\)个不同的时候停止的期望

题解

考虑两种分开询问来算。

第一种:

设\(f[i]\)表示已经有连续的\(i\)个相同时,到达目标状态的期望。

\[f[i]=\frac{1}{m}f[i+1]+\frac{m-1}{m}f[1]+1
\]

相邻两项作差,得到

\[m(f[i+1]-f[i])=f[i+2]-f[i+1]
\]

按照顺序列出来

\(f[0]-f[1]=1\)

\(f[1]-f[2]=m\)

\(f[2]-f[3]=m^2\)

...

\(f[n-1]-f[n]=m^{n-1}\)

将所有式子相加起来

\(f[0]-f[n]=\frac{m^n-1}{1-m}\)

\(f[n]=0\),这样就知道了\(f[0]\)

所以

\[Ans=f[0]=\frac{m^n-1}{1-m}
\]


考虑第二种询问

设\(f[i]\)表示连续\(i\)个不同的数字,到达目标状态的期望

\[f[i]=\frac{m-i}{m}f[i+1]+\frac{f[1]+f[2]+f[3]+...f[i-1]+f[i]}{m}
\]

还是相邻两项作差让后相加,算出答案

\[Ans=\sum_{i=0}^{n-1}\prod_{j=0}^{i}\frac{m}{m-j}
\]

#include<cstdio>
#include<cmath>
using namespace std;
double Solve1(int m,int n){return (pow(m,n)-1.0)/(m-1.0);}
double Solve2(int m,int n)
{
double ret=1,d=1;
for(register int j=1;j<n;++j)d=1.0*m/(m-j)*d,ret+=d;
return ret;
}
int main()
{
register int T,opt,n,m;
while(scanf("%d",&T)!=EOF)while(T--)
{
scanf("%d%d%d",&opt,&m,&n);
printf("%.9lf\n",!opt?Solve1(m,n):Solve2(m,n));
}
}

【HDU4652】Dice(数学期望,动态规划)的更多相关文章

  1. SP1026 FAVDICE - Favorite Dice 数学期望

    题目描述: 一个n面的骰子,求期望掷几次能使得每一面都被掷到. 题解:先谈一下期望DP. 一般地,如果终止状态固定,我们都会选择逆序计算. 很多题目如果顺序计算会出现有分母为 0 的情况,而逆序计算中 ...

  2. 【BZOJ2134】单位错选(数学期望,动态规划)

    [BZOJ2134]单位错选(数学期望,动态规划) 题面 BZOJ 题解 单独考虑相邻的两道题目的概率就好了 没了呀.. #include<iostream> #include<cs ...

  3. 【BZOJ1415】【NOI2005】聪聪和可可(动态规划,数学期望)

    [BZOJ1415][NOI2005]聪聪和可可(动态规划,数学期望) 题面 BZOJ 题解 先预处理出当可可在某个点,聪聪在某个点时 聪聪会往哪里走 然后记忆化搜索一下就好了 #include< ...

  4. 【Luogu1291】百事世界杯之旅(动态规划,数学期望)

    [Luogu1291]百事世界杯之旅(动态规划,数学期望) 题面 洛谷 题解 设\(f[i]\)表示已经集齐了\(i\)个名字的期望 现在有两种方法: 先说我自己的: \[f[i]=f[i-1]+1+ ...

  5. 【BZOJ4872】分手是祝愿(动态规划,数学期望)

    [BZOJ4872]分手是祝愿(动态规划,数学期望) 题面 BZOJ 题解 对于一个状态,如何求解当前的最短步数? 从大到小枚举,每次把最大的没有关掉的灯关掉 暴力枚举因数关就好 假设我们知道了当前至 ...

  6. 【BZOJ1076】奖励关(动态规划,数学期望)

    [BZOJ1076]奖励关(动态规划,数学期望) 题面 懒,粘地址 题解 我也是看了题解才会做 看着数据范围,很容易想到状压 然后,设\(f[i][j]\)表示当前第\(i\)轮,状态为\(j\)的期 ...

  7. HDU 4586 Play the Dice(数学期望)

    Play the Dice Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tot ...

  8. 【HDU4336】Card Collector (动态规划,数学期望)

    [HDU4336]Card Collector (动态规划,数学期望) 题面 Vjudge 题解 设\(f[i]\)表示状态\(i\)到达目标状态的期望 \(f[i]=(\sum f[j]*p[j]+ ...

  9. 动态规划之经典数学期望和概率DP

    起因:在一场训练赛上.有这么一题没做出来. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6829 题目大意:有三个人,他们分别有\(X,Y,Z\)块钱 ...

随机推荐

  1. Oracle用户和模式,表空间

    oracle 用户与表空间关系 oracle用户与表空间关系用户=商家表=商品表空间=仓库1. 1个商家能有很多商品,1个商品只能属于一个商家2. 1个商品可以放到仓库A,也可以放到仓库B,但不能同时 ...

  2. Windows下使用Python的Curses库时 No module named _curses问题

    这个问题产生的 根本原因 是 curses 库不支持 windows.所以我们在下载完成python后(python 是自带 curses 库的),虽然在  python目录\Lib  中可以看到 c ...

  3. php+MySQL的对用户表分表,使用户均匀分布

    假如说我们目前已有一亿个注册用户,要把这些用户平均分配到100张表中,并且后续注册的用户也要均匀分配到这100张表 首先当用户注册时,如用户名为“username”,用php的crc32()函数处理用 ...

  4. centos下JDK安装及环境变量配置

    由于centos安装自带openjdk,需要将其卸载后安装自己的jdk 卸载centos自带jdk 1.查找java :rpm -qa | grep java 2.卸载时提示权限不够,进入root目录 ...

  5. CF刷题-Codeforces Round #481-D. Almost Arithmetic Progression

    题目链接:https://codeforces.com/contest/978/problem/D 题解: 题目的大意就是:这组序列能否组成等差数列?一旦构成等差数列,等差数列的公差必定确定,而且,对 ...

  6. Python爬虫下载Bilibili番剧弹幕

    本文绍如何利用python爬虫下载bilibili番剧弹幕. 准备: python3环境 需要安装BeautifulSoup,selenium包 phantomjs 原理: 通过aid下载bilibi ...

  7. VS默认的类前缀(访问控制符)是internal

    VS默认的类前缀(访问控制符)是internal 大家都知道VS默认新建的class的时候,class前面是什么都没有的,按照规则,这个class的可见性是internal,但是说实话,很多人包括我在 ...

  8. Codeforces 552 E. Two Teams

    E. Two Teams time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  9. PytorchZerotoAll学习笔记(五)--逻辑回归

    逻辑回归: 本章内容主要讲述简单的逻辑回归:这个可以归纳为二分类的问题. 逻辑,非假即真.两种可能,我们可以联想一下在继电器控制的电信号(0 or 1) 举个栗子:比如说你花了好几个星期复习的考试(通 ...

  10. css 元素水平垂直方向居中

    html部分 <div class="parent"> <div class="child"> - -居中- - </div> ...