【HDU4652】Dice(数学期望,动态规划)
【HDU4652】Dice(数学期望,动态规划)
题面
Vjudge
有一个\(m\)面骰子
询问,连续出现\(n\)个相同的时候停止的期望
连续出现\(n\)个不同的时候停止的期望
题解
考虑两种分开询问来算。
第一种:
设\(f[i]\)表示已经有连续的\(i\)个相同时,到达目标状态的期望。
\]
相邻两项作差,得到
\]
按照顺序列出来
\(f[0]-f[1]=1\)
\(f[1]-f[2]=m\)
\(f[2]-f[3]=m^2\)
...
\(f[n-1]-f[n]=m^{n-1}\)
将所有式子相加起来
\(f[0]-f[n]=\frac{m^n-1}{1-m}\)
\(f[n]=0\),这样就知道了\(f[0]\)
所以
\]
考虑第二种询问
设\(f[i]\)表示连续\(i\)个不同的数字,到达目标状态的期望
\]
还是相邻两项作差让后相加,算出答案
\]
#include<cstdio>
#include<cmath>
using namespace std;
double Solve1(int m,int n){return (pow(m,n)-1.0)/(m-1.0);}
double Solve2(int m,int n)
{
double ret=1,d=1;
for(register int j=1;j<n;++j)d=1.0*m/(m-j)*d,ret+=d;
return ret;
}
int main()
{
register int T,opt,n,m;
while(scanf("%d",&T)!=EOF)while(T--)
{
scanf("%d%d%d",&opt,&m,&n);
printf("%.9lf\n",!opt?Solve1(m,n):Solve2(m,n));
}
}
【HDU4652】Dice(数学期望,动态规划)的更多相关文章
- SP1026 FAVDICE - Favorite Dice 数学期望
题目描述: 一个n面的骰子,求期望掷几次能使得每一面都被掷到. 题解:先谈一下期望DP. 一般地,如果终止状态固定,我们都会选择逆序计算. 很多题目如果顺序计算会出现有分母为 0 的情况,而逆序计算中 ...
- 【BZOJ2134】单位错选(数学期望,动态规划)
[BZOJ2134]单位错选(数学期望,动态规划) 题面 BZOJ 题解 单独考虑相邻的两道题目的概率就好了 没了呀.. #include<iostream> #include<cs ...
- 【BZOJ1415】【NOI2005】聪聪和可可(动态规划,数学期望)
[BZOJ1415][NOI2005]聪聪和可可(动态规划,数学期望) 题面 BZOJ 题解 先预处理出当可可在某个点,聪聪在某个点时 聪聪会往哪里走 然后记忆化搜索一下就好了 #include< ...
- 【Luogu1291】百事世界杯之旅(动态规划,数学期望)
[Luogu1291]百事世界杯之旅(动态规划,数学期望) 题面 洛谷 题解 设\(f[i]\)表示已经集齐了\(i\)个名字的期望 现在有两种方法: 先说我自己的: \[f[i]=f[i-1]+1+ ...
- 【BZOJ4872】分手是祝愿(动态规划,数学期望)
[BZOJ4872]分手是祝愿(动态规划,数学期望) 题面 BZOJ 题解 对于一个状态,如何求解当前的最短步数? 从大到小枚举,每次把最大的没有关掉的灯关掉 暴力枚举因数关就好 假设我们知道了当前至 ...
- 【BZOJ1076】奖励关(动态规划,数学期望)
[BZOJ1076]奖励关(动态规划,数学期望) 题面 懒,粘地址 题解 我也是看了题解才会做 看着数据范围,很容易想到状压 然后,设\(f[i][j]\)表示当前第\(i\)轮,状态为\(j\)的期 ...
- HDU 4586 Play the Dice(数学期望)
Play the Dice Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Tot ...
- 【HDU4336】Card Collector (动态规划,数学期望)
[HDU4336]Card Collector (动态规划,数学期望) 题面 Vjudge 题解 设\(f[i]\)表示状态\(i\)到达目标状态的期望 \(f[i]=(\sum f[j]*p[j]+ ...
- 动态规划之经典数学期望和概率DP
起因:在一场训练赛上.有这么一题没做出来. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6829 题目大意:有三个人,他们分别有\(X,Y,Z\)块钱 ...
随机推荐
- 【RAC搭建报错】在RAC搭建到grid安装前的检查时,报错
这种ip的报错,无非是检查防火墙,ip配置的原因 而我防火墙已关闭,ip也没配错 最后的原因是因为我172.16.1.41/42这两个IP选的虚拟机没有配置网段 [grid@rac01 grid]$ ...
- Zigbee系列(概览)
Zigbee技术特点 低速率: 数据传输速率只有20~250kb/s, 2.4GHZ提供250kb/s, 915MHz对应40kb/s, 868Mhz对应20kb/s 低功耗:睡眠模式设备使用电池供电 ...
- this指向问题(箭头函数没有this)
全局环境下,指向windows console.log(this.document === document); // true 函数上下文调用 function f1(){ return this; ...
- Java EE JSP内置对象及表达式语言
一.JSP内置对象 JSP根据Servlet API规范提供了一些内置对象,开发者不用事先声明就可使用标准变量来访问这些对象. JSP提供了9种内置对象: (一).request 简述: JSP编程中 ...
- 教你thinkphp5怎么配置二级域名
有些项目要将移动端和PC端分离开来,比如访问xxx.com,展示的是PC端的页面.而访问m.xxx.com,展示的是移动端的页面.thinkphp源码需要多多学习,这里记录一下知识点,顺便分享给需要的 ...
- Struts2(一.基本介绍,环境搭建及需求分析)
Struts2框架开发 前言 开发工具:eclipse struts1:老项目使用较多,维护时需要用到 struts2:新项目使用较多 一.特点 1. 无侵入式设计 struts2 与 struts ...
- Spring学习(3):Spring架构(转载)
1. Spring架构图 核心容器:包括Core.Beans.Context.EL模块. ●Core模块:封装了框架依赖的最底层部分,包括资源访问.类型转换及一些常用工具类. ●Beans模块:提供了 ...
- python购物车优化
一.需求分析 拥有用户接口和商家接口 用户能够进行消费记录查询,充值,购物等功能,消费记录存储于数据库 商家可以进行商品的增删改等操作 二.程序流程图 程序大致流程图如下: 三.代码实现 本程序分成两 ...
- [python]序列的重复操作符
当你需要需要一个序列的多份拷贝时,重复操作符非常有用,它的语法如下: sequence * copies_int In [1]: a = [1,2,3,4] In [2]: a * 5 Out[2]: ...
- SQL判断是否存在
判断数据库是否存在 ifexists(select*frommaster..sysdatabaseswherename=N’库名’) print’exists’ else print’notexist ...