【HDU4652】Dice(数学期望,动态规划)

题面

Vjudge

有一个\(m\)面骰子

询问,连续出现\(n\)个相同的时候停止的期望

连续出现\(n\)个不同的时候停止的期望

题解

考虑两种分开询问来算。

第一种:

设\(f[i]\)表示已经有连续的\(i\)个相同时,到达目标状态的期望。

\[f[i]=\frac{1}{m}f[i+1]+\frac{m-1}{m}f[1]+1
\]

相邻两项作差,得到

\[m(f[i+1]-f[i])=f[i+2]-f[i+1]
\]

按照顺序列出来

\(f[0]-f[1]=1\)

\(f[1]-f[2]=m\)

\(f[2]-f[3]=m^2\)

...

\(f[n-1]-f[n]=m^{n-1}\)

将所有式子相加起来

\(f[0]-f[n]=\frac{m^n-1}{1-m}\)

\(f[n]=0\),这样就知道了\(f[0]\)

所以

\[Ans=f[0]=\frac{m^n-1}{1-m}
\]


考虑第二种询问

设\(f[i]\)表示连续\(i\)个不同的数字,到达目标状态的期望

\[f[i]=\frac{m-i}{m}f[i+1]+\frac{f[1]+f[2]+f[3]+...f[i-1]+f[i]}{m}
\]

还是相邻两项作差让后相加,算出答案

\[Ans=\sum_{i=0}^{n-1}\prod_{j=0}^{i}\frac{m}{m-j}
\]

#include<cstdio>
#include<cmath>
using namespace std;
double Solve1(int m,int n){return (pow(m,n)-1.0)/(m-1.0);}
double Solve2(int m,int n)
{
double ret=1,d=1;
for(register int j=1;j<n;++j)d=1.0*m/(m-j)*d,ret+=d;
return ret;
}
int main()
{
register int T,opt,n,m;
while(scanf("%d",&T)!=EOF)while(T--)
{
scanf("%d%d%d",&opt,&m,&n);
printf("%.9lf\n",!opt?Solve1(m,n):Solve2(m,n));
}
}

【HDU4652】Dice(数学期望,动态规划)的更多相关文章

  1. SP1026 FAVDICE - Favorite Dice 数学期望

    题目描述: 一个n面的骰子,求期望掷几次能使得每一面都被掷到. 题解:先谈一下期望DP. 一般地,如果终止状态固定,我们都会选择逆序计算. 很多题目如果顺序计算会出现有分母为 0 的情况,而逆序计算中 ...

  2. 【BZOJ2134】单位错选(数学期望,动态规划)

    [BZOJ2134]单位错选(数学期望,动态规划) 题面 BZOJ 题解 单独考虑相邻的两道题目的概率就好了 没了呀.. #include<iostream> #include<cs ...

  3. 【BZOJ1415】【NOI2005】聪聪和可可(动态规划,数学期望)

    [BZOJ1415][NOI2005]聪聪和可可(动态规划,数学期望) 题面 BZOJ 题解 先预处理出当可可在某个点,聪聪在某个点时 聪聪会往哪里走 然后记忆化搜索一下就好了 #include< ...

  4. 【Luogu1291】百事世界杯之旅(动态规划,数学期望)

    [Luogu1291]百事世界杯之旅(动态规划,数学期望) 题面 洛谷 题解 设\(f[i]\)表示已经集齐了\(i\)个名字的期望 现在有两种方法: 先说我自己的: \[f[i]=f[i-1]+1+ ...

  5. 【BZOJ4872】分手是祝愿(动态规划,数学期望)

    [BZOJ4872]分手是祝愿(动态规划,数学期望) 题面 BZOJ 题解 对于一个状态,如何求解当前的最短步数? 从大到小枚举,每次把最大的没有关掉的灯关掉 暴力枚举因数关就好 假设我们知道了当前至 ...

  6. 【BZOJ1076】奖励关(动态规划,数学期望)

    [BZOJ1076]奖励关(动态规划,数学期望) 题面 懒,粘地址 题解 我也是看了题解才会做 看着数据范围,很容易想到状压 然后,设\(f[i][j]\)表示当前第\(i\)轮,状态为\(j\)的期 ...

  7. HDU 4586 Play the Dice(数学期望)

    Play the Dice Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tot ...

  8. 【HDU4336】Card Collector (动态规划,数学期望)

    [HDU4336]Card Collector (动态规划,数学期望) 题面 Vjudge 题解 设\(f[i]\)表示状态\(i\)到达目标状态的期望 \(f[i]=(\sum f[j]*p[j]+ ...

  9. 动态规划之经典数学期望和概率DP

    起因:在一场训练赛上.有这么一题没做出来. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6829 题目大意:有三个人,他们分别有\(X,Y,Z\)块钱 ...

随机推荐

  1. ps 图层解锁后变成全格子(全透明)的解决方法

    其实是因为同时打开了好几个ps文件正在编辑中,所以解决方法就是重启ps,然后单独编辑一个文件,解锁后就不会再出现这种情况能,就能正常编辑了

  2. springboot入门之一:环境搭建

    springboot简介 springboot做为微服务的开发集合框架,有着天然的好处,它不像springmvc那样笨重繁杂,springmvc众多的配置使得开发人员很厌烦,为解决众多的配置带来的烦扰 ...

  3. git远程版本回滚方法【转】

    step1:本地代码回滚到上一版本(或者指定版本) git reset --hard HEAD~1 step2:加入-f参数,强制提交,远程端将强制跟新到reset版本 git push -f ori ...

  4. javaweb(三十八)——事务

    一.事务的概念 事务指逻辑上的一组操作,组成这组操作的各个单元,要不全部成功,要不全部不成功. 例如:A——B转帐,对应于如下两条sql语句  update from account set mone ...

  5. 拼多多商品id怎么查看 拼多多店铺ID怎样看

    网上开店平台有很多编号.id等可以区分商品和店铺的标志,拼多多有店铺id也有商品id,这是两个不同的概念,店铺id进入到拼多多店铺即可查询,拼多多商品id怎么查看 拼多多店铺ID怎样看,那么拼多多商品 ...

  6. 抓包工具Charles学习总结

    最近由于工作需要对App进行测试,功能方面还好说,但是在网络测试方面遇到了一些问题.由于公司App是使用https进行通信,直接在路由器上抓包下来,数据包都是加密的,没法看到接口返回的内容,给测试的B ...

  7. 提升Android ListView性能的几个技巧

    ListView如何运作的? ListView是设计应用于对可扩展性和高性能要求的地方.实际上,这就意味着ListView有以下2个要求: 尽可能少的创建View: 只是绘制和布局在屏幕上可见的子Vi ...

  8. FPGA的过去,现在和未来

    我们知道,相对于专业的ASIC,FPGA有上市时间和成本上的优势.另外,在大多数情况下,FPGA执行某些功能较之CPU上的软件操作更高效.这就是为什么我们认为它不但会运用在数据中心的服务器.交换器.存 ...

  9. php作用域限定符

    双冒号::被认为是作用域限定操作符,用来指定类中不同的作用域级别.::左边表示的是作用域,右边表示的是访问的成员. 系统定义了两个作用域,self和parent.self表示当前类的作用域,在类之外的 ...

  10. scrum立会报告+燃尽图(第三周第二次)

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2284 项目地址:https://coding.net/u/wuyy694 ...