在之前为了寻找最有分类器,我们提出了例如以下优化问题:

在这里我们能够把约束条件改写成例如以下:

首先我们看以下的图示:

非常显然我们能够看出实线是最大间隔超平面,如果×号的是正例,圆圈的是负例。在虚线上的点和在实线上面的两个一共这三个点称作支持向量。如今我们结合KKT条件分析下这个图。

我们从式子和式子能够看出假设那么

这个也就说明时。w处于可行域的边界上,这时才是起作用的约束。

1、那我们如今能够构造拉格朗日函数例如以下:

注意到这里仅仅有没有是由于原问题中没有等式约束,仅仅有不等式约束。

2、接下来我们对w和b分别求偏导数。

并得到

3、将上式带回到拉格朗日函数中得到:

因为,因此简化为

4、如今我们得到了关于w和b的能够最小化的等式。我们在联合这个參数,当然他的条件还是>=0,如今我们能够得到例如以下的二元优化等式了:

5、如今你还必须知道我们之前解说的条件一是,二是KKT条件:

非常显然存在w使得对于全部的i,。因此,一定存在使得是原问题的解。是对偶问题的解。

假设求出了(也就是),依据

就可以求出w(也是,原问题的解)。然后

就可以求出b。即离超平面近期的正的函数间隔要等于离超平面近期的负的函数间隔。

6、如今我们在看另外一个问题:

因为

所以

这里我们将向量内积表示为

如今能够看出我要计算等式的话就仅仅须要计算向量的内积就好了。同一时候要是 在支持向量上面的话。那么,这样就更简单了,因此非常多的值都是0。

支持向量机(SVM)(三)-- 最优间隔分类器(optimal margin classifier)的更多相关文章

  1. [置顶] 最优间隔分类器、原始/对偶问题、SVM的对偶问题——斯坦福ML公开课笔记7

    转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9774135 本篇笔记针对ML公开课的第七个视频,主要内容包括最优间隔分类器( ...

  2. 机器学习支持向量机SVM笔记

    SVM简述: SVM是一个线性二类分类器,当然通过选取特定的核函数也可也建立一个非线性支持向量机.SVM也可以做一些回归任务,但是它预测的时效性不是太长,他通过训练只能预测比较近的数据变化,至于再往后 ...

  3. Andrew Ng机器学习笔记+Weka相关算法实现(五)SVM最优间隔和核方法

    这一章主要解说Ng的机器学习中SVM的兴许内容.主要包括最优间隔分类器求解.核方法. 最优间隔分类器的求解 利用以一篇讲过的的原始对偶问题求解的思路,我们能够将相似思路运用到SVM的求解上来. 详细的 ...

  4. [转]支持向量机SVM总结

    首先,对于支持向量机(SVM)的简单总结: 1. Maximum Margin Classifier 2. Lagrange Duality 3. Support Vector 4. Kernel 5 ...

  5. 支持向量机SVM(一)

    [转载请注明出处]http://www.cnblogs.com/jerrylead 1 简介 支持向量机基本上是最好的有监督学习算法了.最开始接触SVM是去年暑假的时候,老师要求交<统计学习理论 ...

  6. 支持向量机SVM(二)

    [转载请注明出处]http://www.cnblogs.com/jerrylead 6 拉格朗日对偶(Lagrange duality) 先抛开上面的二次规划问题,先来看看存在等式约束的极值问题求法, ...

  7. 【IUML】支持向量机SVM[续]

    支持向量机基本上是最好的有监督学习算法了.看很多正统的讲法都是从VC 维理论和结构风险最小原理出发,然后引出SVM什么的,还有些资料上来就讲分类超平面什么的.我们logistic回归出发,引出了SVM ...

  8. 支持向量机-SVM 学习

    一 .支持向量机(SVM) 1.1 符号定义 标签 y 不再取 0 或 1,而是: y∈{-1, 1} 定义函数: 向量,没有第 0 个维度,b 为截距,预测函数定义为: 1.2 函数间隔与几何间隔 ...

  9. 支持向量机SVM 初识

    虽然已经学习了神经网络和深度学习并在几个项目之中加以运用了,但在斯坦福公开课上听吴恩达老师说他(在当时)更喜欢使用SVM,而很少使用神经网络来解决问题,因此来学习一下SVM的种种. 先解释一些概念吧: ...

随机推荐

  1. linux命令中的 < 和 |、>符号作用就解释

    输出重定向比如输入一条命令,默认行为是将结果输出到屏幕.但有时候我们需要将输出的结果保存到文件,就可以用重定向.ps > ps.txt < 表示的是输入重定向的意思,就是把<后面跟的 ...

  2. Linux命令-统计文件中的字节数、字数、行数:wc

    Linux系统中的wc(Word Count)命令的功能为统计指定文件中的字节数.字数.行数,并将统计结果显示输出. 1.命令格式: wc [选项]文件... 2.命令功能: 统计指定文件中的字节数. ...

  3. 进程控制块PCB结构 task_struct 描述

    注:本分类下文章大多整理自<深入分析linux内核源代码>一书,另有参考其他一些资料如<linux内核完全剖析>.<linux c 编程一站式学习>等,只是为了更好 ...

  4. Google Guice之作用域

    默认情况下,Guice获取一个实例时.每次都会返回一个新的对象. 这个行为能够通过scopes进行配置.Scopes同意你复用实例: 应用整个生命周期(@Singleton),会话(@Session) ...

  5. IDLE经常使用快捷键汇总

    IDLE(An Integrated DeveLopment Environment for Python)是Python自带的编译器,在刚開始学习的人,或写小程序,或用于验证的时候,经经常使用到!假 ...

  6. css常用标签及属性

    css样式表常用的形式有三种,一.行内样式表.二.内部样式表.三.外部样式表 一. <p style="color:red;">nice to meet you< ...

  7. 基于EM的多直线拟合实现及思考

    作者:桂. 时间:2017-03-22  06:13:50 链接:http://www.cnblogs.com/xingshansi/p/6597796.html 声明:欢迎被转载,不过记得注明出处哦 ...

  8. AngularJS概述-3D

    最近工作需要用到,接触的比较多,在此系统学习一下. angular.js 是新一代web MVC开发框架,对应 模型,视图,控制器.,相比 jquery 模式,这种新玩意竟然不需要开发者直接去操作do ...

  9. js innerHTML 改变div内容的方法

    永远不知道你可以改变的内容,一个HTML元素?也许你要取代的文字段落中,以反映什么访客选定刚刚从下拉框中.通过操纵一个元素的innerHtml您可以变更您的文本和HTML多达你喜欢.改变文字inner ...

  10. 基于乐观锁的配置server与XServer的交互

    XServer与配置server,配置server保存有XServer的配置文件里的信息. 怎样在项目启动时.让XServer从配置server中获取到自己的配置信息,并达到通信资源的节省与控制. 通 ...