【BZOJ3518】点组计数 欧拉函数
【BZOJ3518】点组计数
Description
平面上摆放着一个n*m的点阵(下图所示是一个3*4的点阵)。Curimit想知道有多少三点组(a,b,c)满足以a,b,c三点共线。这里a,b,c是不同的3个点,其顺序无关紧要。(即(a,b,c)和(b,c,a)被认为是相同的)。由于答案很大,故你只需要输出答案对1,000,000,007的余数就可以了。

Input
有且仅有一行,两个用空格隔开的整数n和m。
Output
有且仅有一行,一个整数,表示三点组的数目对1,000,000,007的余数。(1,000。000。007是质数)
Sample Input
Sample Output
HINT
对于100%的数据,1< =N.m< =50000
题解:我们先不考虑水平的和竖直的点组,并且先只考虑形如 / 的点组(形如 \ 的点组数目相同)。考虑枚举两端的点的相对位置,将其看成向量(i,j)。如果(i,j)确定了,则中间的点可能的位置也就确定了,并且左端点的绝对位置也能确定了。说白了,方案数等于如下式子:
$\sum\limits_{i=1}^n\sum\limits_{j=1}^m(gcd(i,j)-1)(n-i)(m-j)$
我们将-1单独拿出来考虑,接着进行欧拉反演:
$\sum\limits_{i=1}^n\sum\limits_{j=1}^mgcd(i,j)(n-i)(m-j)\\=\sum\limits_{d=1}^n\varphi(d)\sum\limits_{i=1}^{\lfloor \frac n d \rfloor}(n-i\times d)\sum\limits_{j=1}^{\lfloor \frac m d\rfloor} (m-j\times d)$
由于n,m很小,暴力算即可。
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int N=50010;
typedef long long ll;
const ll P=1000000007;
int num;
ll n,m,ans;
int pri[N],phi[N];
bool np[N];
int main()
{
scanf("%lld%lld",&n,&m);
if(n>m) swap(n,m);
int i,j;
phi[1]=1;
for(i=2;i<=n;i++)
{
if(!np[i]) pri[++num]=i,phi[i]=i-1;
for(j=1;j<=num&&i*pri[j]<=n;j++)
{
np[i*pri[j]]=1;
if(i%pri[j]==0)
{
phi[i*pri[j]]=phi[i]*pri[j];
break;
}
phi[i*pri[j]]=phi[i]*(pri[j]-1);
}
}
for(i=1;i<=n;i++) ans=(ans+phi[i]*((n-i+n%i)*(n/i)/2%P)%P*((m-i+m%i)*(m/i)/2%P)%P)%P;
ans=(ans-((n-1)*n/2%P)*((m-1)*m/2%P)%P+P)%P;
ans=(ans<<1)%P;
ans=(ans+n*(m*(m-1)*(m-2)/6%P)%P+m*(n*(n-1)*(n-2)/6%P)%P)%P;
printf("%lld",ans);
return 0;
}
【BZOJ3518】点组计数 欧拉函数的更多相关文章
- 【bzoj3518】点组计数 欧拉函数(欧拉反演)
题目描述 平面上摆放着一个n*m的点阵(下图所示是一个3*4的点阵).Curimit想知道有多少三点组(a,b,c)满足以a,b,c三点共线.这里a,b,c是不同的3个点,其顺序无关紧要.(即(a,b ...
- poj2409 & 2154 polya计数+欧拉函数优化
这两个题都是项链珠子的染色问题 也是polya定理的最基本和最经典的应用之一 题目大意: 用m种颜色染n个珠子构成的项链,问最终形成的等价类有多少种 项链是一个环.通过旋转或者镜像对称都可以得到置换 ...
- poj 2154 Color(polya计数 + 欧拉函数优化)
http://poj.org/problem?id=2154 大致题意:由n个珠子,n种颜色,组成一个项链.要求不同的项链数目.旋转后一样的属于同一种.结果模p. n个珠子应该有n种旋转置换.每种置换 ...
- HDU 2239 polya计数 欧拉函数
这题模数是9937还不是素数,求逆元还得手动求. 项链翻转一样的算一种相当于就是一种类型的置换,那么在n长度内,对于每个i其循环节数为(i,n),但是由于n<=2^32,肯定不能直接枚举,所有考 ...
- 【省选十连测之九】【DP】【组合计数去重】【欧拉函数】基本题
目录 题意: 输入格式: 输出格式: 数据范围: 思路: 嵌套题的转移 基本题的转移 Part1 Part2 Part3 代码 题意: 这是一个关于括号组合的题. 首先定义一道题是由'(',')',' ...
- 欧拉函数(汇总&例题)
定义 欧拉函数 $\varphi(n)$表示小于等于$n$的正整数中与$n$互质的数的数目. 性质 1.积性函数(证明). 2.$\varphi(1)=1$(显然) 3.对于质数$n$,$\varph ...
- hdu (欧拉函数+容斥原理) GCD
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=1695 看了别人的方法才会做 参考博客http://blog.csdn.net/shiren_Bod/ar ...
- LightOJ1298 One Theorem, One Year(DP + 欧拉函数性质)
题目 Source http://www.lightoj.com/volume_showproblem.php?problem=1298 Description A number is Almost- ...
- HDU 2588 GCD (欧拉函数)
GCD Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Status De ...
随机推荐
- CDH impala安装
环境 CDH版本:5.12.1 添加impala parcel 1.菜单“主机”-->Parcel-->配置-->远程 Parcel 存储库 URL,点击添加按钮,添加一个URL,h ...
- linu 把文件中的字母小写转换为大写,大写转换为小写awk toupper tolower
cat aa.txt|tr "[a-z]" "A-Z" [root@ob2 mytmp]# awk '{print toupper($0)}' aa2.txt ...
- SEO之基于thinkphp的URL伪静态
最近基于thinkphp开发了个导购网站,现在有时间,将遇到的伪静态问题整理下,与大家分享.1.设置URL伪静态在config.ini.php中设置,如果只想前台URL伪静态,那么只在前台的confi ...
- 为什么要把session存入数据库
比如网易的通行证,一个session能进入很多的网易下的网站
- bootstrap -- css -- 辅助类
文本 文本颜色 如果文本是个链接,则鼠标移动到链接文本上的时候,文本会变暗 .text-muted:灰色 .text-primary:浅蓝色 .text-success:绿色 .text-info:深 ...
- 20160216.CCPP体系具体解释(0026天)
程序片段(01):01.MemCpy.c 内容概要:内存拷贝 #include <stdio.h> #include <stdlib.h> #include <memor ...
- par函数usr参数-控制坐标系的范围
在R语言中,会根据数据的范围自动计算x轴和y轴的范围,举个例子 比如绘制一个1到5的散点图:代码示例: plot(1:5, 1:5) 生成的图片如下: 从图片中我们可以看到,x轴的起始位置比1要小,终 ...
- CentOS查看本机公网IP命令
icanhazip.com 使你在任何地方知道你的公网IP地址 icanhazip.com是一个网址,你在浏览器中输入这个网址,你就能得到你的公网IP地址了. 我在Linux下一般使用curl ica ...
- CentOS7怎么修改命令行启动
root用户下直接执行命令: systemctl set-default multi-user.target 然后reboot即可.
- 提取Unity游戏资源和脚本
UnityStudio UnityStudio可以直接在自己的软件上查看图片.shader.文本.还能直接播放音频.甚至还能看场景Hierarchy视图的树状结构.强烈推荐用UnityStudio. ...