【BZOJ3518】点组计数 欧拉函数
【BZOJ3518】点组计数
Description
平面上摆放着一个n*m的点阵(下图所示是一个3*4的点阵)。Curimit想知道有多少三点组(a,b,c)满足以a,b,c三点共线。这里a,b,c是不同的3个点,其顺序无关紧要。(即(a,b,c)和(b,c,a)被认为是相同的)。由于答案很大,故你只需要输出答案对1,000,000,007的余数就可以了。
Input
有且仅有一行,两个用空格隔开的整数n和m。
Output
有且仅有一行,一个整数,表示三点组的数目对1,000,000,007的余数。(1,000。000。007是质数)
Sample Input
Sample Output
HINT
对于100%的数据,1< =N.m< =50000
题解:我们先不考虑水平的和竖直的点组,并且先只考虑形如 / 的点组(形如 \ 的点组数目相同)。考虑枚举两端的点的相对位置,将其看成向量(i,j)。如果(i,j)确定了,则中间的点可能的位置也就确定了,并且左端点的绝对位置也能确定了。说白了,方案数等于如下式子:
$\sum\limits_{i=1}^n\sum\limits_{j=1}^m(gcd(i,j)-1)(n-i)(m-j)$
我们将-1单独拿出来考虑,接着进行欧拉反演:
$\sum\limits_{i=1}^n\sum\limits_{j=1}^mgcd(i,j)(n-i)(m-j)\\=\sum\limits_{d=1}^n\varphi(d)\sum\limits_{i=1}^{\lfloor \frac n d \rfloor}(n-i\times d)\sum\limits_{j=1}^{\lfloor \frac m d\rfloor} (m-j\times d)$
由于n,m很小,暴力算即可。
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int N=50010;
typedef long long ll;
const ll P=1000000007;
int num;
ll n,m,ans;
int pri[N],phi[N];
bool np[N];
int main()
{
scanf("%lld%lld",&n,&m);
if(n>m) swap(n,m);
int i,j;
phi[1]=1;
for(i=2;i<=n;i++)
{
if(!np[i]) pri[++num]=i,phi[i]=i-1;
for(j=1;j<=num&&i*pri[j]<=n;j++)
{
np[i*pri[j]]=1;
if(i%pri[j]==0)
{
phi[i*pri[j]]=phi[i]*pri[j];
break;
}
phi[i*pri[j]]=phi[i]*(pri[j]-1);
}
}
for(i=1;i<=n;i++) ans=(ans+phi[i]*((n-i+n%i)*(n/i)/2%P)%P*((m-i+m%i)*(m/i)/2%P)%P)%P;
ans=(ans-((n-1)*n/2%P)*((m-1)*m/2%P)%P+P)%P;
ans=(ans<<1)%P;
ans=(ans+n*(m*(m-1)*(m-2)/6%P)%P+m*(n*(n-1)*(n-2)/6%P)%P)%P;
printf("%lld",ans);
return 0;
}
【BZOJ3518】点组计数 欧拉函数的更多相关文章
- 【bzoj3518】点组计数 欧拉函数(欧拉反演)
题目描述 平面上摆放着一个n*m的点阵(下图所示是一个3*4的点阵).Curimit想知道有多少三点组(a,b,c)满足以a,b,c三点共线.这里a,b,c是不同的3个点,其顺序无关紧要.(即(a,b ...
- poj2409 & 2154 polya计数+欧拉函数优化
这两个题都是项链珠子的染色问题 也是polya定理的最基本和最经典的应用之一 题目大意: 用m种颜色染n个珠子构成的项链,问最终形成的等价类有多少种 项链是一个环.通过旋转或者镜像对称都可以得到置换 ...
- poj 2154 Color(polya计数 + 欧拉函数优化)
http://poj.org/problem?id=2154 大致题意:由n个珠子,n种颜色,组成一个项链.要求不同的项链数目.旋转后一样的属于同一种.结果模p. n个珠子应该有n种旋转置换.每种置换 ...
- HDU 2239 polya计数 欧拉函数
这题模数是9937还不是素数,求逆元还得手动求. 项链翻转一样的算一种相当于就是一种类型的置换,那么在n长度内,对于每个i其循环节数为(i,n),但是由于n<=2^32,肯定不能直接枚举,所有考 ...
- 【省选十连测之九】【DP】【组合计数去重】【欧拉函数】基本题
目录 题意: 输入格式: 输出格式: 数据范围: 思路: 嵌套题的转移 基本题的转移 Part1 Part2 Part3 代码 题意: 这是一个关于括号组合的题. 首先定义一道题是由'(',')',' ...
- 欧拉函数(汇总&例题)
定义 欧拉函数 $\varphi(n)$表示小于等于$n$的正整数中与$n$互质的数的数目. 性质 1.积性函数(证明). 2.$\varphi(1)=1$(显然) 3.对于质数$n$,$\varph ...
- hdu (欧拉函数+容斥原理) GCD
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=1695 看了别人的方法才会做 参考博客http://blog.csdn.net/shiren_Bod/ar ...
- LightOJ1298 One Theorem, One Year(DP + 欧拉函数性质)
题目 Source http://www.lightoj.com/volume_showproblem.php?problem=1298 Description A number is Almost- ...
- HDU 2588 GCD (欧拉函数)
GCD Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Status De ...
随机推荐
- tomcat7项目启动报错java.lang.NoClassDefFoundError: org/apache/juli/logging/LogFactory
报这个错说明用的是tomcat7 打开myeclipse,Preferentces->MyEclipse->Servers->Tomcat->Tomcat 6.x ,载入 ...
- Adobe AIR(跨平台应用)
Adobe AIR(跨平台应用)现在正式应用于android平台了,Adobe Air是一款独立的客户端应用软件,这些软件可以作为单独的程序安装使用,它可以使开发人员使用HTML.JavaScript ...
- 上传文件到 Sharepoint 的文档库中和下载 Sharepoint 的文档库的文件到客户端
文件操作应用场景: 如果你的.NET项目是运行在SharePoint服务器上的,你可以直接使用SharePoint服务器端对象模型,用SPFileCollection.Add方法 http://msd ...
- web api post/put空值问题以及和angular的冲突的解决
先看web api自己的问题 即便你新建一个项目,也会看到示例的values控制器有两个接受[FromBody]String参数的put和post方法,请求的时候发现不能从request里面得到想要的 ...
- delphi程序热键
要定义一个全局热键,通常有三个步骤: 1.定义Windows的消息WM_HOTKEY的HOOK链,即 procedure MyShortCut(Var Message: ...
- MathType编辑指数的方法
利用MathType编辑公式使得在文档中编辑理工类的论文工作减轻了不少,它所包含的符号与模板基本都可以满足我们日常工作学习中对公式的需要.在文档中编辑数学物理符号或者是函数表达式,都是用word公式编 ...
- C语言文件路径中的”/“和“\“
在不同系统的情况系 windows下是\,linux和unix下是/ 但在win中没有本质区别. 但是由于 \ 也是转义字符的起始字符, 所以, 路径中的 \ 通常需要使用 ...
- mysqldump: command not found
原因:这是由于系统默认会查找/usr/bin下的命令,如果这个命令不在这个目录下,当然会找不到命令,我们需要做的就是映射一个链接到/usr/bin目录下,相当于建立一个链接文件.首先得知道mysql命 ...
- IDE、SATA、SCSI、SAS、FC、SSD 硬盘类型
http://www.cnblogs.com/awpatp/archive/2013/01/29/2881431.html
- 工具类之数据库工具类:DBUtil(採用反射机制)
常常操作数据库的码农们一定知道操作数据库是一项非常复杂的工作.它不仅要解决各种乱码的问题还要解决各种数据表的增删改查等的操作. 另外每次操作数据库都要用到数据库连接.运行SQL语句.关闭连接的操作.所 ...