bzoj1272 Gate Of Babylon(计数方法+Lucas定理+乘法逆元)
Description

Input

Output

Sample Input
2 1 10 13
3
Sample Output
12

Source

看到t很小,想到用容斥原理,推一下发现n种数中选m个方法为C(n+m,m)。然后有的超过的就是先减掉b[i]+1,再算。由于n,m较大,p较小,故可用Lucas定理+乘法逆元搞。
把老师给的题解也放在这吧:
首先,看到有限制的只有15个,因此可以考虑使用容斥原理:Ans=全部没有限制的方案-有1个超过限制的方案数+有2个超过限制的方案数-有3个超过限制的方案数…。以此类推。我们先考虑没有限制的,在m组无限制的数中选n个的方案数,显然就是C(n+m-1,n),因为这道题是要求不超过m的方案数,也就是那么运用加法原理发现答案也就是C(n+0-1,0)+C(n+1-1,1)+C(n+2-1,2)+...+C(n+m-1,m)=C(n+m,m),然后考虑有限制的情况,有一个超过限制直接用总数减去(这个的限制+1)就是当前的总数,相当于强制要选限制+1个为空。然后只要DFS,记录到当前为止选了几个,答案要记是b[i]+1,判断加减,最后累加答案。最后,n、m过大,发现p是一个质数,所以可以用Lucas定理,Lucas(n,m,p)=Lucas(n/p,m/p,p)*C(n%p,m%p),其中C(n%p,m%p)求的时候要用到乘法逆元。
program babylon(input,output);
var
t,i:longint;
ans,n,m,j,p:int64;
b:array[..]of int64;
a:array[..]of int64;
function pow(x,y:int64):int64;
begin
pow:=;
while y> do
begin
if y mod = then pow:=pow*x mod p;
x:=x*x mod p;
y:=y>>;
end;
end;
function z(n,m:int64):int64;
begin
if n<m then exit();
exit(a[n]*pow(a[n-m]*a[m] mod p,p-) mod p);
end;
function c(n,m:int64):int64;
begin
if n<m then exit();
c:=;
while (n>) and (m>) do
begin
c:=c*z(n mod p,m mod p) mod p;
n:=n div p;m:=m div p;
end;
end;
procedure dfs(k:longint;r,s:int64);
begin
if k=t+ then
begin
ans:=(ans+r*c(n+m-s,n)) mod p;
exit;
end;
dfs(k+,r,s);
dfs(k+,-r,s+b[k]+);
end;
begin
assign(input,'babylon.in');assign(output,'babylon.out');reset(input);rewrite(output);
readln(n,t,m,p);
for i:= to t do read(b[i]);
a[]:=;j:=;
while j<p do begin inc(j);a[j]:=a[j-]*j mod p; end;
ans:=;
dfs(,,);
if ans< then ans:=ans+p;write(ans);
close(input);close(output);
end.
bzoj1272 Gate Of Babylon(计数方法+Lucas定理+乘法逆元)的更多相关文章
- HDU3037 Saving Beans(Lucas定理+乘法逆元)
题目大概问小于等于m个的物品放到n个地方有几种方法. 即解这个n元一次方程的非负整数解的个数$x_1+x_2+x_3+\dots+x_n=y$,其中0<=y<=m. 这个方程的非负整数解个 ...
- 【BZOJ】2982: combination(lucas定理+乘法逆元)
http://www.lydsy.com/JudgeOnline/problem.php?id=2982 少加了特判n<m return 0就wa了QAQ lucas定理:C(n, m)%p=( ...
- hihocoder #1698 假期计划 (排列组合+费马小定理+乘法逆元)
Description 小Ho未来有一个为期N天的假期,他计划在假期中看A部电影,刷B道编程题.为了劳逸结合,他决定先拿出若干天看电影,再拿出若干天刷题,最后再留若干天看电影.(若干代指大于0) 每 ...
- 【BZOJ 1272】 1272: [BeiJingWc2008]Gate Of Babylon (容斥原理+卢卡斯定理)
1272: [BeiJingWc2008]Gate Of Babylon Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 254 Solved: 12 ...
- 【bzoj2111】[ZJOI2010]Perm 排列计数 dp+Lucas定理
题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Mogic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Mogic的,答案可能很 ...
- CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...
- hdu1576-A/B-(同余定理+乘法逆元+费马小定理+快速幂)
A/B Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 3923 Invoker(polya定理+乘法逆元(扩展欧几里德+费马小定理))
Invoker Time Limit : 2000/1000ms (Java/Other) Memory Limit : 122768/62768K (Java/Other) Total Subm ...
- bzoj1272 Gate Of Babylon
[问题描述] [输入格式] [输出格式] [样例输入] 2 1 10 13 3 [样例输出] 12 [样例说明] [数据范围] 先容斥,考虑枚举哪些条件强制不满足,即直接选出b[i]+1件宝具 假设强 ...
随机推荐
- Mac Eclipse快捷键
Command + O:显示大纲Command + 1:快速修复Command + D:删除当前行Command + Option + ↓:复制当前行到下一行Command + Option + ↑: ...
- L013-linux基础正则表达式手把手实战讲解小节
L013-linux基础正则表达式手把手实战讲解小节 这么一看又有10天没更新博客了,最近也一直在学就是时间比较闲散,再加上做上次老师留的十多道题,所以时间比较紧张,本来做完题准备直接先看L014讲解 ...
- [转]关于PreparedStatement.addBatch()方法
Statement和PreparedStatement的区别就不多废话了,直接说PreparedStatement最重要的addbatch()结构的使用. 1.建立链接,(打电话拨号 ) Connec ...
- macOS中启动Tomcat提示Cannot find ./catalina.sh
首先查看Tomcat目录下是否存在catalina.sh,如果文件不存在,文件丢失,最好的方式是重装Tomcat Tomcat官网:http://tomcat.apache.org/ 如果文件存在,那 ...
- JavaScript 中函数的参数
functionName(parameter1, parameter2, parameter3) { // 要执行的代码…… } 参数规则 JavaScript 函数定义时形参没有指定数据类型. Ja ...
- selenium webdriver API详解(二)
本系列主要讲解webdriver常用的API使用方法(注意:使用前请确认环境是否安装成功,浏览器驱动是否与谷歌浏览器版本对应) 一:获取当前页面的title(一般获取title用于断言) from s ...
- Codeforces Round #502 (in memory of Leopoldo Taravilse, Div. 1 + Div. 2) E. The Supersonic Rocket
这道题比赛之后被重新加了几个case,很多人现在都过不了了 算法就是先求凸包,然后判断两个凸包相等 我们可以吧凸包序列化为两点距离和角度 角度如果直接拿向量的叉积是不对的,,因为钝角和锐角的叉积有可能 ...
- KRKR基础篇(二)
这里介绍一些krkr的语法规范,具体的命令含义及用法以后再叙述 一:kag语法及基本概念 KAG使用的剧本语言为KAG Script,文件扩展名为.ks 脚本内的文字除 注释, 命令 , 段落标 ...
- Unity FSM 有限状态机
翻译了一下unity wiki上对于有限状态机的案例,等有空时在详细写一下.在场景中添加两个游戏物体,一个为玩家并修改其Tag为Player,另一个为NPC为其添加NPCControl脚本,并为其将玩 ...
- iOS 播放音频文件
// 播放音乐 NSString *path = [[NSBundle mainBundle] pathForResource:@"1670" ofType:@&qu ...