Codeforces 786C Till I Collapse
题意:
给出一个长度为n的序列,每个数值在1-n之间且为整数,现在要把这个序列划分为若干段,使得每一段的颜色种数不超过k,求最少的区间数目.对于从1到n的n种k的取值,分别输出这时的最少区间数目.
分析:
首先这个题很像HH的项链,而HH的项链的在线做法需要写可持久化线段树,我们自然想到这个题也需要可持久化线段树
考虑对于每个k分别求解.暴力的贪心做法是这样:从左端开始,每次找出一段尽量长的颜色种数不超过k的区间划分出来.如果颜色种数要求不超过k,那么划分的区间段数最多为n/k上取整.(k个元素一段即可).对于k的n种取值,一共最多要找nln(n)段区间.如果能在较低的复杂度(例如logn)内找出每一段区间,这个题就做出来了.
然后我的想法是类似bzoj4504 K个串,写了一发区间修改的可持久化线段树,然后每次在线段树上二分.Codeforces的官方题解大概相当于这个做法差分一下,不需要区间修改,只需要单点修改的可持久化线段树.
具体是:对于每个左端点L,我们求出一个数组f[L][],f[L][i]存储从L到i出现的不同颜色的种数(如果i<L那么f[L][i]=0).那么从F[L][]到F[L-1][],只有a[L-1]影响的一段区间的数值会+1,那么可以用可持久化线段树来维护这个序列.查询时如果二分答案,每次在线段树上查询是两个log,直接在线段树上二分(也就是在每个节点判断向左侧还是右侧递归求解)就是一个log的.我写了一发标记永久化.细节参见代码.
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=100005;
struct node{
int Max,mk;
node* ch[2];
node(){}
node(int x,int y){
ch[0]=ch[1]=0;Max=x;mk=y;
}
}t[maxn*60];int tsz=0;
node* root[maxn];
node* newnode(int x,int y){
t[++tsz]=node(x,y);return t+tsz;
}
int a[maxn];
int last[maxn];
void Insert(node* rt0,node* &rt,int l,int r,int ql,int qr){
if(ql<=l&&r<=qr){
rt=newnode(rt0->Max+1,rt0->mk+1);
rt->ch[0]=rt0->ch[0];rt->ch[1]=rt0->ch[1];
}else{
rt=newnode(0,rt0->mk);
rt->ch[0]=rt0->ch[0];rt->ch[1]=rt0->ch[1];
int mid=(l+r)>>1;
if(ql<=mid)Insert(rt0->ch[0],rt->ch[0],l,mid,ql,qr);
if(qr>mid)Insert(rt0->ch[1],rt->ch[1],mid+1,r,ql,qr);
rt->Max=max(rt->ch[0]->Max,rt->ch[1]->Max)+rt0->mk;
}
}
int n;
int query(node* rt,int l,int r,int lim,int pre){
if(l==r){//printf("%d\n",pre);
if(pre+rt->Max>lim)return -1;
else return l;
}
int lmax=rt->ch[0]->Max+pre+rt->mk;
int mid=(l+r)>>1;
if(lmax>lim)return query(rt->ch[0],l,mid,lim,pre+rt->mk);
else if(lmax<lim)return query(rt->ch[1],mid+1,r,lim,pre+rt->mk);
int t=query(rt->ch[1],mid+1,r,lim,pre+rt->mk);
if(t==-1)return mid;
else return t;
}
int right(int s,int lim){
return query(root[s],1,n,lim,0);
}
int work(int lim){
int pt=1;
int ans=0;
while(pt<=n){
ans++;
pt=right(pt,lim)+1;//if(lim==1)printf("%d\n",pt);
}
return ans;
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;++i)scanf("%d",a+i);
root[n+1]=newnode(0,0);
root[n+1]->ch[0]=root[n+1]->ch[1]=root[n+1];
for(int i=1;i<=n;++i)last[i]=n+1;
for(int i=n;i>=1;--i){
root[i]=root[i+1];
Insert(root[i],root[i],1,n,i,last[a[i]]-1);
last[a[i]]=i;
}
// printf("%d\n",query(root[1],1,n,1,0));return 0;
for(int i=1;i<=n;++i){
printf("%d ",work(i));
}
return 0;
}
Codeforces 786C Till I Collapse的更多相关文章
- Codeforces 786C Till I Collapse(树状数组+扫描线+倍增)
[题目链接] http://codeforces.com/contest/786/problem/C [题目大意] 给出一个数列,问对于不同的k,将区间划分为几个, 每个区间出现不同元素个数不超过k时 ...
- Codeforces 786C. Till I Collapse 主席树
题目大意: 给定一个长度为\(n\)的序列,要求将其划分为最少的若干段使得每段中不同的数字的种数不超过\(k\). 对于 \(k = 1 .. n\)输出所有的答案. \(n \leq 10^5\) ...
- Till I Collapse CodeForces - 786C (主席树区间加,二分最小值)
大意: 给定序列, 将序列划分为若干段, 使得每段不同数字不超过k, 分别求出k=1...n时的答案. 考虑贪心, 对于某个k 从1开始, 每次查询最后一个颜色数<=k的点作为一个划分, 直到全 ...
- Codeforces 786 C. Till I Collapse
题目链接:http://codeforces.com/contest/786/problem/C 大力膜了一发杜教的代码感觉十分的兹瓷啊! 我们知道如果$k$是给定的我们显然是可以直接一遍$O(n)$ ...
- CF786C Till I Collapse 整体二分+根号分治
题意:对于一个序列,假如说一个区间内最多能包含 $k$ 个不同的数,那么这个序列最少会被划分成几个区间 $?$ 输出 $k$ 为 $1\sim n$ 的答案. 我们每次选区间一定是贪心地将这个区间选地 ...
- [cf787E]Till I Collapse
考虑对询问分块,对于i<K的询问,暴力处理,时间复杂度为o(Kn):对于i>K的询问,发现答案都小于n/K且满足单调性,那么可以二分出每一段相同的答案,时间复杂度为$o(n^{2}log_ ...
- CF786C Till I Collapse
题目分析 首先,对于这道题,可以用贪心以一个\(O(n)\)的复杂度求解一个\(k\)的值 暴力是\(O(n^2)\)的复杂度,当然过不了. 我们手推一下样例,会发现,答案满足单调性,于是,果断想到二 ...
- Codeforces Round #406 (Div. 1)
B题打错调了半天,C题想出来来不及打,还好没有挂题 AC:AB Rank:96 Rating:2125+66->2191 A.Berzerk 题目大意:有一个东东在长度为n的环上(环上点编号0~ ...
- 【Codeforces Round #406 (Div. 2)】题解
The Monster 签到题,算一下b+=a和d+=c,然后卡一下次数就可以了. Not Afraid 只要一组出现一对相反数就是安全的. Berzerk 题意:[1,n],两个人轮流走,谁能走到1 ...
随机推荐
- 20155321 2016-2017-2《Java程序设计》课堂实践项目2
20155321 2016-2017-2<Java程序设计>课堂实践项目2 实践内容 编写MyCP.java 实现类似Linux下cp XXX1 XXX2的功能,要求MyCP支持两个参数: ...
- 20155321 《Java程序设计》实验报告一:Java开发环境的熟悉(Windows+IDEA)
实验要求 使用JDK编译.运行简单的Java程序: 使用IDEA 编辑.编译.运行.调试Java程序. 实验内容 命令行下Java程序开发 打开windows下的cmd → 输入cd Code命令进入 ...
- # 20155337 2016-2017-2 《Java程序设计》第五周学习总
20155337 2016-2017-2 <Java程序设计>第五周学习总结 教材学习内容总结 第八章 •语法与继承架构 •使用try.catch •特点: 使用try.catch语法,J ...
- Wiki版产品需求---产品需求文档到底是谁的?产品到底是谁的?
在听了测试的一通唠叨之后,"内部实现一堆逻辑,只有一句话的需求文档","文档那么简单,我们怎么测试啊",心中突然想起来自己曾经干的一件当时觉得还不错的事情,但是 ...
- Objective-C 方法交换实践(一) - 基础知识
一.Objective-C 中的基本类型 首先看下 Objective-C 的对象模型,每个 Objective-C 对象都是一个指向 Class 的指针.Class 的结构如下: struct ob ...
- L014-第三关课前linux命令及基础知识考试手把手实战解答小节
又是一周啊,以后保持一周一个微博吧. 这是一个堂解答考试题的课,那么就以题目来展开吧! 1.如何取得/etiantian文件的权限对应的数字内容,如-rw-r--r--为644,要求用命令获得644这 ...
- Base64编码后通过Url传值
Base64编码简介 Base编码使用"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/",再加上补 ...
- C#入门经典第十章例题 - - 卡牌
1.库 using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ...
- [寒假学习笔记](一)Markdown语法学习
Markdown 学习 在博客园上使用markdown编辑,记录学习进度,以来日可以复习 前期准备 1. 安装markdownpad2 官网直接找下载安装,遇到bug他会自动提示信息,跟着提示去安装一 ...
- 简单主机批量管理工具(这里实现了paramiko 用su切换到root用户)
项目名:简单主机批量管理工具 一.需求 1.主机分组 2.可批量执行命令.发送文件,结果实时返回,执行格式如下 batch_run -h h1,h2,h3 -g web_clusters,db_ ...