P1642 规划
题目链接
题意分析
一看就知道是一道\(01\)分数规划的题
我们二分值之后 跑树形背包就可以了
CODE:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdlib>
#include<string>
#include<queue>
#include<map>
#include<stack>
#include<list>
#include<set>
#include<deque>
#include<vector>
#include<ctime>
#define ll long long
#define inf 1e9
#define N 508
#define IL inline
#define M 1008611
#define D double
#define eps 1e-5
#define R register
using namespace std;
template<typename T>IL void read(T &_)
{
T __=0,___=1;char ____=getchar();
while(!isdigit(____)) {if(____=='-') ___=0;____=getchar();}
while(isdigit(____)) {__=(__<<1)+(__<<3)+____-'0';____=getchar();}
_=___ ? __:-__;
}
/*-------------OI使我快乐-------------*/
int n,m,tot;
struct Node
{
int xx,yy;
}e[N];
D dp[N][N],num[N];
D le,ri=inf,ans;
int siz[N],to[N],nex[N],head[N];
IL void add(int x,int y)
{to[++tot]=y;nex[tot]=head[x];head[x]=tot;}
IL void dfs(int now,int fat)
{
dp[now][0]=0;siz[now]=1;
for(R int i=head[now];i;i=nex[i])
{
int v=to[i];
if(v==fat) continue;
dfs(v,now);
siz[now]+=siz[v];
for(R int j=min(m,siz[now]);j>=0;--j)
for(R int k=0;k<=min(j,siz[v]);++k)
dp[now][j]=max(dp[now][j],dp[now][j-k]+dp[v][k]);
}
for(R int i=siz[now];i;--i) dp[now][i]=dp[now][i-1]+num[now];
}
IL bool check(D now)
{
for(R int i=1;i<=n;++i)
for(R int j=0;j<=m;++j) dp[i][j]=-inf;
for(R int i=1;i<=n;++i) num[i]=(D)e[i].xx-((D)now*e[i].yy);
dfs(1,0);
for(R int i=1;i<=n;++i)
if(dp[i][m]>-eps) return 1;
return 0;
}
int main()
{
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
read(n);read(m);m=n-m;
for(R int i=1;i<=n;++i) read(e[i].xx);
for(R int i=1;i<=n;++i) read(e[i].yy);
for(R int i=1,x,y;i<n;++i)
{
read(x);read(y);
add(x,y);add(y,x);
}
while((ri-le)>eps)
{
D mid=(le+ri)/2.0;
if(check(mid)) ans=le=mid;
else ri=mid;
}
printf("%.1f\n",ans);
// fclose(stdin);
// fclose(stdout);
return 0;
}
HEOI 2019 RP++
P1642 规划的更多相关文章
- [洛谷P1642]规划
题目大意:有一棵$n(n\leqslant100)$个点的树,每个点有两个权值$a,b$,要求选择一个$m$个点的连通块$S$,最大化$\dfrac{\sum\limits_{i\in S}a_i}{ ...
- P1642 规划 01分数规划+树形DP
$ \color{#0066ff}{ 题目描述 }$ 某地方有N个工厂,有N-1条路连接它们,且它们两两都可达.每个工厂都有一个产量值和一个污染值.现在工厂要进行规划,拆除其中的M个工厂,使得剩下的工 ...
- luogu P1642 规划
嘟嘟嘟 看到最后让求一个比值,应该得往01规划上去想.令x = ∑v[i] / ∑c[i],则x * ∑c[i] = ∑v[i], ∑(v[i] - x * c[i]) = 0. 于是可以二分x(注意 ...
- P1642 规划 [01分数规划]
裸题,考虑size完了跑一个树上背包,这题没了. // by Isaunoya #include <bits/stdc++.h> using namespace std; #define ...
- shell脚本规划化模板
shell脚本规划化模板 Linux运维过程中,shell脚本是不可缺少的工具,但是每个运维人员编程的习惯都不一样,很多时候就是实现某个功能,写出来的脚本都是烂七八糟的.脚本必须规范化,应该从以后几个 ...
- IT基础架构规划方案一(网络系统规划)
背景 某集团经过多年的经营,公司业务和规模在不断发展,公司管理层和IT部门也认识到通过信息化手段可以更好地支撑公司业务运营.提高企业生产和管理效率.同时随着新建办公 ...
- 攻城记:Thinkphp框架的项目规划总结和踩坑经验
一.项目模块规划 1.项目分为PC端.移动端.和PC管理端,分为对应目录为 /Application/Home,/Application/Mobile,/Application/Admin: 对应入口 ...
- 【BZOJ-3627】路径规划 分层图 + Dijkstra + spfa
3627: [JLOI2014]路径规划 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 186 Solved: 70[Submit][Status] ...
- Google地图路线规划
Google地图路线规划: 需求:给定的两点之间Google地图路径规划和详情. 代码实现: //map定义省略 var directionsDisplay = new google.maps.Dir ...
随机推荐
- 二叉树翻转 · binary tree flipping
[抄题]: 给定一个二叉树,其中所有右节点要么是具有兄弟节点的叶节点(有一个共享相同父节点的左节点)或空白,将其倒置并将其转换为树,其中原来的右节点变为左叶子节点.返回新的根节点. 您在真实的面试中是 ...
- 用Diff和Patch工具维护源码
在Unix系统下,维护源码版本可以使用很多方法,其中最常用的当然是大名鼎鼎的CVS,但实际上,简单的版本维护工作并没有必要使用复杂的CVS等专门的版本维护工具,Unix标配中的diff和patch工具 ...
- Linux远程桌面实现(转)
http://blog.csdn.net/txg703003659/article/details/6619652 先说一下本人的实现环境: 控制端:Ubuntu 11.04 被控制端:CentOS ...
- Mybatis 实用篇(四)返回值类型
Mybatis 实用篇(四)返回值类型 一.返回 List.Map List<User> getUsers(); <select id="getUsers" re ...
- Executing a Finite-Length Task in the Background
[Executing a Finite-Length Task in the Background] Apps that are transitioning to the background can ...
- 判断字符串是否为回文 python
回文正序和逆序一样的字符串,例如abccba 方法一 def is_palindrome1(text): l = list(text) l.reverse() t1 = ''.join(l) if t ...
- UVa 11297 Census (二维线段树)
题意:给定上一个二维矩阵,有两种操作 第一种是修改 c x y val 把(x, y) 改成 val 第二种是查询 q x1 y1 x2 y2 查询这个矩形内的最大值和最小值. 析:二维线段树裸板. ...
- 关于Spring Data redis几种对象序列化的比较
redis虽然提供了对list set hash等数据类型的支持,但是没有提供对POJO对象的支持,底层都是把对象序列化后再以字符串的方式存储的.因此,Spring data提供了若干个Seriali ...
- 如何用Word发布WordPress博客
目前大部分的博客作者在用Word写博客这件事情上都会遇到以下3个痛点: 1.所有博客平台关闭了文档发布接口,用户无法使用Word,Windows Live Writer等工具来发布博客.使用Word写 ...
- ETL 运行维护
装载数据仓库过程中,不管作业是实时执行还是批处理方式执行,其调度时间,执行顺序和执行环境都是关键点. 本章描述创建一个ETL操作策略,来保证数据仓库的数据即时可用. ETL执行策略分为两种:1 调度 ...