这题看了半天看不懂题意。。。还是看的网上题意写的

加一个源点一个汇点,把每个点拆成两个,这两个点的流量是v,其他联通的边都设为无穷大

输入没有1的点就与源点连接,输出只有1的点就与汇点连接

还有这个输出技巧,因为每条反向弧初始容量设置为0,因此完成增广之后,反向弧的容量即为路径。

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<cassert>
#include<iomanip>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define pi acos(-1)
#define ll long long
#define mod 10007
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#pragma comment(linker, "/STACK:1024000000,1024000000") using namespace std; const double g=10.0,eps=1e-;
const int N=+,maxn=+,inf=0x3fffff; int a[N][];
int s,t,n,p,pre[N];
bool vis[N];
int c[N][N];
bool bfs()
{
memset(pre,,sizeof pre);
memset(vis,,sizeof vis);
vis[s]=;
queue<int>q;
q.push(s);
while(!q.empty()){
int x=q.front();
q.pop();
if(x==t)return ;
for(int i=;i<=*n+;i++)
{
if(!vis[i]&&c[x][i])
{
vis[i]=;
q.push(i);
pre[i]=x;
}
}
}
return ;
}
int max_flow()
{
int ans=;
while(){
if(!bfs())break;
int minn=inf;
for(int i=t;i!=s;i=pre[i])
minn=min(minn,c[pre[i]][i]);
for(int i=t;i!=s;i=pre[i])
{
c[pre[i]][i]-=minn;
c[i][pre[i]]+=minn;
}
ans+=minn;
}
cout<<ans<<" ";
}
int main()
{
ios::sync_with_stdio(false);
cin.tie();
// cout<<setiosflags(ios::fixed)<<setprecision(2);
while(cin>>p>>n){
memset(c,,sizeof(c));
for(int i=;i<=n;i++)
{
cin>>c[i][i+n];
for(int j=;j<=p;j++)cin>>a[i][j];
for(int j=;j<=p;j++)cin>>a[i+n][j];
}
for(int i=;i<=n;i++)
{
bool flag=;
for(int j=;j<=p;j++)
if(a[i][j]==)
{
flag=;
break;
}
if(flag)c[][i]=inf;
flag=;
for(int j=;j<=p;j++)
if(a[i+n][j]!=)
{
flag=;
break;
}
if(flag)c[i+n][*n+]=inf;
}
for(int i=n+;i<=*n;i++)//前驱
{
for(int j=;j<=n;j++)//后继
{
bool flag=;
for(int l=;l<=p;l++)
{
if(a[j][l]+a[i][l]==)
{
flag=;
break;
}
}
if(flag)c[i][j]=inf;
}
}
/* for(int i=0;i<=2*n+1;i++)
{
for(int j=0;j<=2*n+1;j++)
cout<<c[i][j]<<" ";
cout<<endl;
}*/
s=;t=*n+;//t是汇点
max_flow();
int cnt=,a1[N],a2[N],a3[N];
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
if(i!=j&&c[j][i+n]>)
{
++cnt;
a1[cnt]=i;
a2[cnt]=j;
a3[cnt]=c[j][i+n];
}
}
}
cout<<cnt<<endl;
for(int i=;i<=cnt;i++)
cout<<a1[i]<<" "<<a2[i]<<" "<<a3[i]<<endl;
}
return ;
}

poj3436网络流之最大流拆点的更多相关文章

  1. POJ 3436 ACM Computer Factory (网络流,最大流)

    POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...

  2. 洛谷P4003 无限之环(infinityloop)(网络流,费用流)

    洛谷题目传送门 题目 题目描述 曾经有一款流行的游戏,叫做 Infinity Loop,先来简单的介绍一下这个游戏: 游戏在一个 n ∗ m 的网格状棋盘上进行,其中有些小方格中会有水管,水管可能在格 ...

  3. 【BZOJ2324】[ZJOI2011]营救皮卡丘(网络流,费用流)

    [BZOJ2324][ZJOI2011]营救皮卡丘(网络流,费用流) 题面 BZOJ 洛谷 题解 如果考虑每个人走的路径,就会很麻烦. 转过来考虑每个人破坏的点集,这样子每个人可以得到一个上升的序列. ...

  4. HDU 3338 Kakuro Extension (网络流,最大流)

    HDU 3338 Kakuro Extension (网络流,最大流) Description If you solved problem like this, forget it.Because y ...

  5. POJ 2711 Leapin' Lizards / HDU 2732 Leapin' Lizards / BZOJ 1066 [SCOI2007]蜥蜴(网络流,最大流)

    POJ 2711 Leapin' Lizards / HDU 2732 Leapin' Lizards / BZOJ 1066 [SCOI2007]蜥蜴(网络流,最大流) Description Yo ...

  6. HDU 4289 Control (网络流,最大流)

    HDU 4289 Control (网络流,最大流) Description You, the head of Department of Security, recently received a ...

  7. HDU 4292 Food (网络流,最大流)

    HDU 4292 Food (网络流,最大流) Description You, a part-time dining service worker in your college's dining ...

  8. 【BZOJ1449】[JSOI2009]球队收益(网络流,费用流)

    [BZOJ1449][JSOI2009]球队收益(网络流,费用流) 题面 BZOJ 洛谷 题解 首先对于一支队伍而言,总共进行多少场比赛显然是已知的,假设是\(n_i\)场,那么它的贡献是:\(C_i ...

  9. Libre 6005 「网络流 24 题」最长递增子序列 / Luogu 2766 最长递增子序列问题(网络流,最大流)

    Libre 6005 「网络流 24 题」最长递增子序列 / Luogu 2766 最长递增子序列问题(网络流,最大流) Description 问题描述: 给定正整数序列x1,...,xn . (1 ...

随机推荐

  1. .NET中将中文符号转换成英文符号

    public static string ConvertToEn(string text) { const string s1 = ".:,?!.“”‘’"; const stri ...

  2. 为linux扩展swap分区

    1.查看当前swap分区使用情况 [root@localhost ~]# swapon -s Filename Type Size Used Priority /dev/sda2            ...

  3. 最近遇到的bug

    1. 地图周边快查,按钮点击没反应 子控件超出了父控件 2.图片显示灰色背景,一直去不掉    设置图片背景图片clear cloro  3. 显示隐藏导航栏  下面两个方法效果不同     self ...

  4. H5上传压缩图片

    看这个,比较全的 https://github.com/mhbseal/html5ImgCompress ,几乎所有痛点都解决了! PC上传图片 基本结构 form[enctype="mul ...

  5. 003-spring cache-JCache (JSR-107) annotations

    参看地址:https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache-js ...

  6. 1040. 有几个PAT(25)

    原题: https://www.patest.cn/contests/pat-b-practise/1040 思路: 先给大家扔个测试PAPAATTPATTT, 人工查一下这段字符串能组成 34个PA ...

  7. idea中使用junit测试时使用Scanner类无法正常测试

    解决办法是:在main函数中测试方可有效. public static void main(String[] args){ Scanner sc = new Scanner(System.in);// ...

  8. c# ArrayList 的排序问题!

    2009-01-19 20:10 c# ArrayList 的排序问题! c# ArrayList 的排序问题! 我看见网上有人用IComparer接口实现ArrayLIst 的排序问题 ,于是自己写 ...

  9. Linux centos7 redis安装教程

    1.下载解压 #下载至/home/install(或windows系统下载后上传) mkdir /home/install cd /home/install wget http://124.205.6 ...

  10. 【运维技术】shell脚本实现线程挂掉,自动重启功能

    由于分布式系统的流行,服务器上面部署的项目都是多实例的.而我又希望有一个功能,当服务器出现异常情况能够自动重启实例. 所以我想到了使用shell脚本监控实例进程id,如果不存在的话,就重启对应的实例. ...