滑动窗口的中位数 · Sliding Window Median
[抄题]:
给定一个包含 n 个整数的数组,和一个大小为 k 的滑动窗口,从左到右在数组中滑动这个窗口,找到数组中每个窗口内的中位数。(如果数组个数是偶数,则在该窗口排序数字后,返回第 N/2 个数字。)
对于数组 [1,2,7,8,5]
, 滑动大小 k = 3 的窗口时,返回 [2,7,7]
最初,窗口的数组是这样的:
[ | 1,2,7 | ,8,5]
, 返回中位数 2
;
接着,窗口继续向前滑动一次。
[1, | 2,7,8 | ,5]
, 返回中位数 7
;
接着,窗口继续向前滑动一次。
[1,2, | 7,8,5 | ]
, 返回中位数 7
;
[暴力解法]:
时间分析:
空间分析:
[思维问题]:
- 不理解两个heap和窗口的大小关系:把窗口容量全扔进来,具体分到哪个格子另当别论
- 体会到了treemap相对于heap的优越性:想romove哪个点是随便的。注意接口、实现都不是PQ,是treeset 而且树状的题想想里面装的是node还是数字
[一句话思路]:
窗口移动就是加一个元素、减一个元素,用俩函数实现,所以可以放在maxheap minheap中
[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):
[画图]:
[一刷]:
- 窗口满了之后romove第一个点,i - k + 1,不是第i个点,写习惯了就错了。重要的参数要提前注释行
- 要在maxheap有点的前提下进行节点交换,想到其临界情况:还没有点
[二刷]:
[三刷]:
[四刷]:
[五刷]:
[五分钟肉眼debug的结果]:
[总结]:
参数需要边分析边写,留意leetcode lintcode接口是不是不一样
[复杂度]:Time complexity: O(n个数*左右treeset体积lgk) Space complexity: O(n)
[英文数据结构或算法,为什么不用别的数据结构或算法]:
- node中自己的类、自己的compareTo方法都应该有参数,否则无法调用,要理解其作用
- 只有implements能实现接口,还是很多个。不要写extends
[关键模板化代码]:
自制Collections.sort 方法有一个字母 第一位不相等
自制compareTo 方法有两个字母 第二位相等
[其他解法]:
[Follow Up]:
[LC给出的题目变变变]:
class Node implements Comparable<Node>{
int id;
int val;
Node (int id, int val){
this.id = id;
this.val = val;
}
public int compareTo(Node other) {
Node a = other;
if (this.val == a.val) {
return this.id - a.id;
}else {
return this.val - a.val;
}
}
} public class Solution {
/*
* @param nums: A list of integers
* @param k: An integer
* @return: The median of the element inside the window at each moving
*/
public double[] medianSlidingWindow(int[] nums, int k) {
//corner case
int n = nums.length;
double[] result = new double[n];
if (nums == null || k == 0) {
return result;
}
TreeSet<Node> minHeap = new TreeSet<>();
TreeSet<Node> maxHeap = new TreeSet<>();
//add all nums into window, rest
int half = (k + 1) / 2;
int index = 0;
for (int i = 0; i < k - 1; i++) {
add(minHeap, maxHeap, half, new Node(i, nums[i]));
}
for (int i = k - 1; i < n; i++) {
add(minHeap, maxHeap, half, new Node(i, nums[i]));
nums[index] = minHeap.last().val;
index++;
remove(minHeap, maxHeap, new Node(i - k + 1, nums[i - k + 1]));
} return result;
} // write reference first!
void add(TreeSet<Node> minHeap, TreeSet<Node> maxHeap, int size, Node node) {
if (minHeap.size() < size) {
minHeap.add(node);
}else {
maxHeap.add(node);
} if (minHeap.size() == size) {
//don't forget just minheap, need to ensure
if (maxHeap.size() > 0 && minHeap.last().val > maxHeap.first().val) {
Node b = minHeap.last();
Node s = maxHeap.first();
minHeap.remove(b);
minHeap.add(s);
maxHeap.remove(s);
maxHeap.add(b);
}
}
} void remove(TreeSet<Node> minHeap, TreeSet<Node> maxHeap, Node node) {
if (minHeap.contains(node)) {
minHeap.remove(node);
}else {
maxHeap.remove(node);
}
}
}
[代码风格] :
- 打草稿的时候先把函数参数写了 是分析出来的,不要主函数调用的时候就瞎写
- Node 注意开头得大写
滑动窗口的中位数 · Sliding Window Median的更多相关文章
- 滑动窗口协议(Sliding Window Protocol)
滑动窗口协议(Sliding Window Protocol),属于TCP协议的一种应用,用于网络数据传输时的流量控制,以避免拥塞的发生.该协议允许发送方在停止并等待确认前发送多个数据分组.由于发送方 ...
- 【LeetCode】480. 滑动窗口中位数 Sliding Window Median(C++)
作者: 负雪明烛 id: fuxuemingzhu 公众号: 每日算法题 本文关键词:LeetCode,力扣,算法,算法题,滑动窗口,中位数,multiset,刷题群 目录 题目描述 题目大意 解题方 ...
- 洛谷——P1886 滑动窗口|| POJ——T2823 Sliding Window
https://www.luogu.org/problem/show?pid=1886#sub || http://poj.org/problem?id=2823 题目描述 现在有一堆数字共N个数字( ...
- [LeetCode] Sliding Window Median 滑动窗口中位数
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- Lintcode360 Sliding Window Median solution 题解
[题目描述] Given an array of n integer, and a moving window(size k), move the window at each iteration f ...
- Leetcode: Sliding Window Median
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- Sliding Window Median LT480
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- LeetCode 480. Sliding Window Median
原题链接在这里:https://leetcode.com/problems/sliding-window-median/?tab=Description 题目: Median is the middl ...
- 480 Sliding Window Median 滑动窗口中位数
详见:https://leetcode.com/problems/sliding-window-median/description/ C++: class Solution { public: ve ...
随机推荐
- Linux:root下的文件-anaconda-ks.cfg详解
anaconda-ks.cfg详解 系统安装的时候生成的一个文件,通过这个文件可以修改成自动安装的脚本,用于自动安装同样配置的系统. 自动生成的启动文件anaconda# Kickstart file ...
- JS在项目中用到的AOP, 以及函数节流, 防抖, 事件总线
1. 项目中在绑定事件的时候总想在触发前,或者触发后做一些统一的判断或逻辑,在c#后端代码里,可以用Attribute, filter等标签特性实现AOP的效果,可是js中没有这种用法,归根到本质还是 ...
- 五种开源协议的比较(BSD,Apache,GPL,LGPL,MIT)
本篇博客比较了常见的5种开源协议的异同,大家在为自己的代码选择协议的时候可以参考.现今存在的开源协议很多,而经过Open Source Initiative组织通过批准的开源协议目前有58种(http ...
- 量化投资策略:常见的几种Python回测框架(库)
量化投资策略:常见的几种Python回测框架(库) 原文地址:http://blog.csdn.net/lawme/article/details/51454237 本文章为转载文章.这段时间在研究量 ...
- linux screen 命令详解(转载)
转载于:http://www.cnblogs.com/mchina/archive/2013/01/30/2880680.html 一.背景 系统管理员经常需要SSH 或者telent 远程登录到Li ...
- 转 关于nvcc fatal : Value 'sm_20' is not defined for option 'gpu-architecture'的问题
原文地址: https://blog.csdn.net/Mao_Jonah/article/details/78965827 关于nvcc fatal : Value ‘sm_20’ is not d ...
- BZOJ4978: [Lydsy1708月赛]泛化物品(乱搞)
4978: [Lydsy1708月赛]泛化物品 Time Limit: 5 Sec Memory Limit: 256 MBSubmit: 220 Solved: 70[Submit][Statu ...
- opencv之访问图像像素
访问像素的三种方法 ①指针访问:最快 ②迭代器iterator:较慢,非常安全,指针访问可能出现越界问题 ③动态地址计算:更慢,通过at()实现.适用于访问具体某个第i行,j列的像素,而不适用遍历像素 ...
- 浅谈c#垃圾回收机制(GC)
写了一个window服务,循环更新sqlite记录,内存一点点稳步增长.三天后,内存溢出.于是,我从自己的代码入手,查找到底哪儿占用内存释放不掉,最终明确是调用servicestack.ormlite ...
- 在AD中存取照片
AD中有存放照片的字段吗? 答案肯定是有的.photo,jpegPhoto,thumbnailPhoto 前端时间客户,包括领导 在问通讯录中的照片为什么存在数据库中而不是AD中,AD中的属性能不能利 ...