csacademy

description

有\(M\)种颜色编号为\(1-M\)。现给树上的每个点染上这\(M\)种颜色中的一种,定义一棵树是\(\mbox{colorful}\)的当且仅当这棵树上\(M\)种颜色都出现了至少一次。定义一片森林是\(\mbox{colorful}\)的当且仅当其中的每一棵树都是\(\mbox{colorful}\)的。

求\(n\)点带标号的\(\mbox{colorful}\)的森林的数量模\(924844033\)。

\(n\le10^5,m\le50\)

\(Hint:924844033=2^{21}\times441+1\),它的原根是\(5\)。

sol

首先求出\(n\)点构成一棵\(\mbox{colorful}\)的树的方案数\(g_n\)。

\[g_n=\begin{cases}1&n=1\\n^{n-2} \times S(n,m) \times m!&n\ge2\end{cases}
\]

\(n^{n-2}\)是带标号完全图生成树的方案数,后面的第二类斯特林数乘阶乘的组合意义就是把\(n\)个不同的球放入\(m\)个不同的盒子里且不允许空盒的方案数。

然后设\(f_n\)表示答案,考虑新加入的第\(n\)号点和那些点连通构成一棵树:

\[f_n=\sum_{i=1}^ng_i\binom{n-1}{i-1}f_{n-i}
\]

把组合数拆开就是一个卷积的形式,直接分治法法塔即可。复杂度\(O(n\log^2n)\)

懒得写求逆了

code

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int gi(){
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
const int N = 4e5+5;
const int mod = 924844033;
int n,m,jc[N],jcn[N],S[N][105],g[N],f[N],rev[N],og[N],x[N],y[N];
int fastpow(int a,int b){
int res=1;
while(b){if(b&1)res=1ll*res*a%mod;a=1ll*a*a%mod;b>>=1;}
return res;
}
void ntt(int *P,int opt,int len){
int l=0;while((1<<l)<len)++l;--l;
for (int i=0;i<len;++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<l);
for (int i=0;i<len;++i) if (i<rev[i]) swap(P[i],P[rev[i]]);
for (int i=1;i<len;i<<=1){
int W=fastpow(5,(mod-1)/(i<<1));
if (opt==-1) W=fastpow(W,mod-2);
og[0]=1;for (int j=1;j<i;++j) og[j]=1ll*og[j-1]*W%mod;
for (int p=i<<1,j=0;j<len;j+=p)
for (int k=0;k<i;++k){
int x=P[j+k],y=1ll*og[k]*P[j+k+i]%mod;
P[j+k]=(x+y)%mod;P[j+k+i]=(x-y+mod)%mod;
}
}
if (opt==-1) for (int i=0,Inv=fastpow(len,mod-2);i<len;++i) P[i]=1ll*P[i]*Inv%mod;
}
void solve(int l,int r){
if (l==r) return;int mid=l+r>>1;solve(l,mid);
int len=1;while(len<=r-l+1)len<<=1;
for (int i=0;i<len;++i) x[i]=y[i]=0;
for (int i=l;i<=mid;++i) x[i-l]=1ll*f[i]*jcn[i]%mod;
for (int i=1;i<=r-l;++i) y[i-1]=1ll*g[i]*jcn[i-1]%mod;
ntt(x,1,len);ntt(y,1,len);
for (int i=0;i<len;++i) x[i]=1ll*x[i]*y[i]%mod;
ntt(x,-1,len);
for (int i=mid+1;i<=r;++i) f[i]=(f[i]+1ll*x[i-l-1]*jc[i-1])%mod;
solve(mid+1,r);
}
int main(){
n=gi();m=gi();
jc[0]=jcn[0]=1;
for (int i=1;i<=n;++i) jc[i]=1ll*jc[i-1]*i%mod;
jcn[n]=fastpow(jc[n],mod-2);
for (int i=n;i;--i) jcn[i-1]=1ll*jcn[i]*i%mod;
S[0][0]=1;
for (int i=1;i<=n;++i)
for (int j=1;j<=i&&j<=m;++j)
S[i][j]=(1ll*S[i-1][j]*j+S[i-1][j-1])%mod;
for (int i=1;i<=n;++i)
g[i]=1ll*(i==1?1:fastpow(i,i-2))*S[i][m]%mod*jc[m]%mod;
f[0]=1;solve(0,n);
for (int i=1;i<=n;++i) printf("%d\n",f[i]);return 0;
}

[CSAcademy]Colored Forests的更多相关文章

  1. Codeforces554 C Kyoya and Colored Balls

    C. Kyoya and Colored Balls Time Limit: 2000ms Memory Limit: 262144KB 64-bit integer IO format: %I64d ...

  2. poj 2513 Colored Sticks trie树+欧拉图+并查集

    点击打开链接 Colored Sticks Time Limit: 5000MS   Memory Limit: 128000K Total Submissions: 27955   Accepted ...

  3. Machine Learning Methods: Decision trees and forests

    Machine Learning Methods: Decision trees and forests This post contains our crib notes on the basics ...

  4. POJ 2513 Colored Sticks

    Colored Sticks Time Limit: 5000MS   Memory Limit: 128000K Total Submissions: 28036   Accepted: 7428 ...

  5. poj.2419.Forests (枚举 + set用法)

    Forests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5782   Accepted: 2218 Descripti ...

  6. 周赛-Colored Sticks 分类: 比赛 2015-08-02 09:33 7人阅读 评论(0) 收藏

    Colored Sticks Time Limit: 5000MS Memory Limit: 128000K Total Submissions: 32423 Accepted: 8556 Desc ...

  7. codeforces 553A . Kyoya and Colored Balls 组合数学

    Kyoya Ootori has a bag with n colored balls that are colored with k different colors. The colors are ...

  8. Codeforces Round #309 (Div. 2) C. Kyoya and Colored Balls 排列组合

    C. Kyoya and Colored Balls Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contes ...

  9. 随机森林——Random Forests

    [基础算法] Random Forests 2011 年 8 月 9 日 Random Forest(s),随机森林,又叫Random Trees[2][3],是一种由多棵决策树组合而成的联合预测模型 ...

随机推荐

  1. chrome 关闭安全模式

    chrome.exe --disable-web-security --user-data-dir

  2. http之工作原理

    HTTP协议定义Web客户端如何从Web服务器请求Web页面,以及服务器如何把Web页面传送给客户端.HTTP协议采用了请求/响应模型.客户端向服务器发送一个请求报文,请求报文包含请求的方法.URL. ...

  3. bzoj3751 / P2312 解方程

    P2312 解方程 bzoj3751(数据加强) 暴力的一题 数据范围:$\left | a_{i} \right |<=10^{10000}$.连高精都无法解决. 然鹅面对这种题,有一种常规套 ...

  4. Linux基础入门(实验楼实验)

    实验一 Linux系统简介 Linux和windows.Mac OS一样是一种操作系统.最早流行起来的操作系统是UNIX,但由于其过度商业化,价格昂贵,因此在校园里人们大多选择MINIX.1991年, ...

  5. Xilinx Uboot网卡驱动分析

    1.MAC控制器.网卡.PHY.MDIO.mii.gmii.rgmii概念扫盲 网卡在功能上包含OSI模型的两个层,数据链路层和物理层.物理层定义了数据传送与接收所需要的电与光信号.线路状态.时钟基准 ...

  6. MariaDB主从复制搭建

    我的github 安装MySQL服务器 安装数据库 yum install -y mariadb-server 初始化数据库 mysql_secure_installation #MySql初始化脚本 ...

  7. NOIP 2018退役祭

    Day 0 实在是没啥特别想干的...路上看了一下FE的小玉的第四周目的视频...然后到了之后整理了一下东西,然后被slr教着学了一下一个叫翻棋的东西,然后立刻就上瘾了...然后就听slr先生教我滑铁 ...

  8. UVa 11609 组队(快速幂)

    https://vjudge.net/problem/UVA-11609 题意: 有n个人,选一个或多个人参加比赛,其中一名当队长,有多少种方案?如果参赛者完全相同,但队长不同,算作不同的方案. 思路 ...

  9. Codeforces Round #169 (Div. 2) E. Little Girl and Problem on Trees dfs序+线段树

    E. Little Girl and Problem on Trees time limit per test 2 seconds memory limit per test 256 megabyte ...

  10. npm汇总:npm命令 + 实用插件

    一.npm常用命令,以便查阅: npm install     //运行npm install可根据package.json的配置自动安装所有依赖包 npm uninstall   //卸载依赖,如n ...