题目描述

字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#define mod 100000000
#define ll long long
#define re register
using namespace std;
int f[2][5005]={},r[2][5005]={};//必须开滚动数组,不开绝对爆空间,由于动态规划中,一个阶段的决策只受上一个阶段的影响,
//因此可以将以前的状态覆盖掉。只要存两个状态,故只开第一个下标为0~1的二维数组
//r[i][j]存第一个字串前i个(一直被轮换),第二个字串前j个最长子序列的个数
char s1[5005]={},s2[5005]={};
int n,m;
int main()
{
scanf("%s",s1+1);//s1+1代表从s1[1]开始读入数据,s[0]不读入
n=strlen(s1+1)-1;
scanf("%s",s2+1);
m=strlen(s2+1)-1;
re int now=1,pre=0;//这两个变量用来判断两个状态中哪个是以前状态(pre),哪个是现在状态(now)(滚动数组的产物)
for(re int k=0;k<=m;k++)
r[0][k]=1;//初始化,长度为0最长子序列方案数为1(第一个序列长度为0)
r[1][0]=1;//长度为0最长子序列方案数为1(第二个序列长度为0)
for(re int i=1;i<=n;i++)
{
for(re int j=1;j<=m;j++)
{
f[now][j]=max(f[pre][j],f[now][j-1]);
r[now][j]=0;//后面的方案数都是由前面加过来的
if(s1[i]==s2[j])f[now][j]=max(f[now][j],f[pre][j-1]+1);
if(s1[i]==s2[j]&&f[now][j]==f[pre][j-1]+1) r[now][j]+=r[pre][j-1];
if(f[pre][j]==f[now][j]) r[now][j]+=r[pre][j];
if(f[now][j-1]==f[now][j]) r[now][j]+=r[now][j-1];//加上f[i-1][j]和f[i][j-1]中=k的方案数
if(f[pre][j-1]==f[now][j]) r[now][j]-=r[pre][j-1];//如果a[i]!=b[j]且f[i-1][j-1]=k,就要减去它的方案数
r[now][j]=(r[now][j]+mod)%mod;//+mod可以省略
}
now=pre;pre=1-pre;//滚动
}
printf("%d\n%d",f[pre][m],r[pre][m]);
return 0;
}

洛谷P2516 [HAOI2010]最长公共子序列的更多相关文章

  1. 洛谷P2516 [HAOI2010]最长公共子序列(LCS,最短路)

    洛谷题目传送门 一进来就看到一个多月前秒了此题的ysn和YCB%%% 最长公共子序列的\(O(n^2)\)的求解,Dalao们想必都很熟悉了吧!不过蒟蒻突然发现,用网格图貌似可以很轻松地理解这个东东? ...

  2. 洛谷 P2516 [HAOI2010]最长公共子序列

    题目传送门 解题思路: 第一问要求最长公共子序列,直接套模板就好了. 第二问要求数量,ans[i][j]表示第一个字符串前i个字符,第二个字符串前j个字符的最长公共子序列的数量 如果f[i][j]是由 ...

  3. 洛谷1439:最长公共子序列(nlogn做法)

    洛谷1439:最长公共子序列(nlogn做法) 题目描述: 给定两个序列求最长公共子序列. 这两个序列一定是\(1\)~\(n\)的全排列. 数据范围: \(1\leq n\leq 10^5\) 思路 ...

  4. 2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组)

    2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组) https://www.luogu.com.cn/problem/P2516 题意: 给定字符串 \(S\) ...

  5. P2516 [HAOI2010]最长公共子序列 题解(LCS)

    题目链接 最长公共子序列 解题思路 第一思路: 1.用\(length[i][j]\)表示\(a\)串的前\(i\)个字符与\(b\)串的前\(j\)个字符重叠的最长子串长度 2.用\(num[i][ ...

  6. luogu P2516 [HAOI2010]最长公共子序列

    传送门 首先那个\(O(n^2)\)的dp都会吧,不会自己找博客或者问别人,或是去做模板题(误) 对以下内容不理解的,强势推荐flash的博客 我们除了原来记录最长上升子序列的\(f_{i,j}\), ...

  7. Luogu P2516 [HAOI2010]最长公共子序列 DP

    首先$LIS$显然:$f[i][j]=max(f[i][j-1],f[i-1][j],(a[i]==b[j])*f[i-1][j-1])$ 考虑如何转移数量: 首先,不管$a[i]$是否等于$b[j] ...

  8. P2516 [HAOI2010]最长公共子序列

    传送门 看到数据范围,显然 $n^2$ 的 $dp$... 设 $f[i][j]$ 表示 $A$ 串考虑了前 $i$ 位,$B$ 串考虑了前 $j$ 位,最优情况下的方案数 但是好像没法判断转移来的是 ...

  9. [BZOJ2423][HAOI2010]最长公共子序列

    [BZOJ2423][HAOI2010]最长公共子序列 试题描述 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x ...

随机推荐

  1. Mybatis逆向工程使用方法

    使用官方网站的mapper自动生成工具mybatis-generator-core-1.3.2来生成po类和mapper映射文件. 一.mapper生成配置文件 在generatorConfig.xm ...

  2. Java基础(五)--内部类

    内部类简单来说就是把一个类的定义放到另一个类的定义内部 内部类分为:成员内部类.局部内部类.匿名内部类.静态内部类 成员内部类:最常见的内部类 public class Outter { privat ...

  3. Java编辑编译及运行环境

    Java编辑编译及运行环境 Microsoft Windows 编辑工具 EditPlus JDK JDK(Java Development Kit,Java开发工具包)安装JDK之后,其中bin文件 ...

  4. Spring Boot 与任务

    一.任务 1.异步任务 package com.yunche.task.service; import org.springframework.stereotype.Service; /** * @C ...

  5. ubuntu 安装codeblocks13.12

    通过添加PPA的方法安装: sudo add-apt-repository ppa:pasgui/ppa sudo apt-get update sudo apt-get install codebl ...

  6. outflow Boundary Condition in FLuent

    assumption: flow is imcompressible, fully developed, $\partial \phi / \partial X =0$, where is X is ...

  7. 处理回车提交、ctrl+enter和shift+enter都不提交->textarea正常换行

    <input type="textarea" @on-keypress="handlerMultiEnter"> handlerMultiEnter ...

  8. 1067 Bash游戏 V2

    有一堆石子共有N个.A B两个人轮流拿,A先拿.每次只能拿1,3,4颗,拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出N,问最后谁能赢得比赛. 例如N = 2.A只能 ...

  9. Thread的方法join()使用

    join()的作用:Waits for this thread to die.等待线程对象销毁.在Thread源码中可以看到join源码是使用了wait()方法来实现等待功能. 因为join()内部使 ...

  10. [codevs 1183][泥泞的道路(二分+spfa)

    题目:http://dev.codevs.cn/problem/1183/ 分析:这个和最优比率生成树很像,都可以二分答案的,只不过判定方面一个是求是否有最短路径,一个是求是否有生成树.假设等待判定的 ...