题目描述

字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#define mod 100000000
#define ll long long
#define re register
using namespace std;
int f[2][5005]={},r[2][5005]={};//必须开滚动数组,不开绝对爆空间,由于动态规划中,一个阶段的决策只受上一个阶段的影响,
//因此可以将以前的状态覆盖掉。只要存两个状态,故只开第一个下标为0~1的二维数组
//r[i][j]存第一个字串前i个(一直被轮换),第二个字串前j个最长子序列的个数
char s1[5005]={},s2[5005]={};
int n,m;
int main()
{
scanf("%s",s1+1);//s1+1代表从s1[1]开始读入数据,s[0]不读入
n=strlen(s1+1)-1;
scanf("%s",s2+1);
m=strlen(s2+1)-1;
re int now=1,pre=0;//这两个变量用来判断两个状态中哪个是以前状态(pre),哪个是现在状态(now)(滚动数组的产物)
for(re int k=0;k<=m;k++)
r[0][k]=1;//初始化,长度为0最长子序列方案数为1(第一个序列长度为0)
r[1][0]=1;//长度为0最长子序列方案数为1(第二个序列长度为0)
for(re int i=1;i<=n;i++)
{
for(re int j=1;j<=m;j++)
{
f[now][j]=max(f[pre][j],f[now][j-1]);
r[now][j]=0;//后面的方案数都是由前面加过来的
if(s1[i]==s2[j])f[now][j]=max(f[now][j],f[pre][j-1]+1);
if(s1[i]==s2[j]&&f[now][j]==f[pre][j-1]+1) r[now][j]+=r[pre][j-1];
if(f[pre][j]==f[now][j]) r[now][j]+=r[pre][j];
if(f[now][j-1]==f[now][j]) r[now][j]+=r[now][j-1];//加上f[i-1][j]和f[i][j-1]中=k的方案数
if(f[pre][j-1]==f[now][j]) r[now][j]-=r[pre][j-1];//如果a[i]!=b[j]且f[i-1][j-1]=k,就要减去它的方案数
r[now][j]=(r[now][j]+mod)%mod;//+mod可以省略
}
now=pre;pre=1-pre;//滚动
}
printf("%d\n%d",f[pre][m],r[pre][m]);
return 0;
}

洛谷P2516 [HAOI2010]最长公共子序列的更多相关文章

  1. 洛谷P2516 [HAOI2010]最长公共子序列(LCS,最短路)

    洛谷题目传送门 一进来就看到一个多月前秒了此题的ysn和YCB%%% 最长公共子序列的\(O(n^2)\)的求解,Dalao们想必都很熟悉了吧!不过蒟蒻突然发现,用网格图貌似可以很轻松地理解这个东东? ...

  2. 洛谷 P2516 [HAOI2010]最长公共子序列

    题目传送门 解题思路: 第一问要求最长公共子序列,直接套模板就好了. 第二问要求数量,ans[i][j]表示第一个字符串前i个字符,第二个字符串前j个字符的最长公共子序列的数量 如果f[i][j]是由 ...

  3. 洛谷1439:最长公共子序列(nlogn做法)

    洛谷1439:最长公共子序列(nlogn做法) 题目描述: 给定两个序列求最长公共子序列. 这两个序列一定是\(1\)~\(n\)的全排列. 数据范围: \(1\leq n\leq 10^5\) 思路 ...

  4. 2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组)

    2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组) https://www.luogu.com.cn/problem/P2516 题意: 给定字符串 \(S\) ...

  5. P2516 [HAOI2010]最长公共子序列 题解(LCS)

    题目链接 最长公共子序列 解题思路 第一思路: 1.用\(length[i][j]\)表示\(a\)串的前\(i\)个字符与\(b\)串的前\(j\)个字符重叠的最长子串长度 2.用\(num[i][ ...

  6. luogu P2516 [HAOI2010]最长公共子序列

    传送门 首先那个\(O(n^2)\)的dp都会吧,不会自己找博客或者问别人,或是去做模板题(误) 对以下内容不理解的,强势推荐flash的博客 我们除了原来记录最长上升子序列的\(f_{i,j}\), ...

  7. Luogu P2516 [HAOI2010]最长公共子序列 DP

    首先$LIS$显然:$f[i][j]=max(f[i][j-1],f[i-1][j],(a[i]==b[j])*f[i-1][j-1])$ 考虑如何转移数量: 首先,不管$a[i]$是否等于$b[j] ...

  8. P2516 [HAOI2010]最长公共子序列

    传送门 看到数据范围,显然 $n^2$ 的 $dp$... 设 $f[i][j]$ 表示 $A$ 串考虑了前 $i$ 位,$B$ 串考虑了前 $j$ 位,最优情况下的方案数 但是好像没法判断转移来的是 ...

  9. [BZOJ2423][HAOI2010]最长公共子序列

    [BZOJ2423][HAOI2010]最长公共子序列 试题描述 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x ...

随机推荐

  1. Java基础——面向对象(封装——继承——多态 )

    对象 对象: 是类的实例(实现世界中 真 实存在的一切事物 可以称为对象) 类: 类是对象的抽象描述 步骤: 1.定义一个类 (用于 描述人:) ( * 人:有特征和行为) 2.根据类 创建对象 -- ...

  2. 浅析Oracle中的不等于号

    前几天碰到一个关于Oracle不等于的问题,最后搜索了一下,发现下面资料,拿来跟大家分享一下,需要的朋友可以参考下     关于Oracle中的不等于号: 在Oracle中, <> != ...

  3. (七)python3 切片

    切片:取一个 list 或 tuple 的部分元素是非常常见的操作 >>> L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack'] #笨办法 ...

  4. 关于React.PropTypes的废除,以及新版本下的react的验证方式

    React.PropTypes是React用来typechecking的一个属性.要在组件的props上运行typechecking,可以分配特殊的propTypes属性: class Greetin ...

  5. [luoguP2915] [USACO08NOV]奶牛混合起来Mixed Up Cows(DP)

    传送门 f[i][S] 表示当前集合为 S,最后一个数为 i 的最优解 f[i][S] += f[j][S - i] (j, i ∈ S && j != i && ab ...

  6. J - Invitation Cards 最短路

    In the age of television, not many people attend theater performances. Antique Comedians of Malidine ...

  7. SQL Server死锁总结 [转]

    1. 死锁原理 根据操作系统中的定义:死锁是指在一组进程中的各个进程均占有不会释放的资源,但因互相申请被其他进程所站用不会释放的资源而处于的一种永久等待状态. 死锁的四个必要条件:互斥条件(Mutua ...

  8. Spring Cloud(4):Feign的使用

    基于上一篇文章:https://www.cnblogs.com/xuyiqing/p/10867739.html 使用Ribbon实现了订单服务调用商品服务的Demo 下面介绍如何使用Feign实现这 ...

  9. OSX: node中安装zeromq

    1. brew install pkg-config2. brew install zmq3. export PKG_CONFIG_PATH="/usr/local/lib/pkgconfi ...

  10. linux下nginx+svn

    http://fengqi.me/unix/23.html 因为没有什么可以定制的, 所以svn直接使用系统自带的包管理软件安装, 以centos系列为例, 命令如下: yum install sub ...