Description

Computing the exact number of ways that N things can be taken M at a time can be a great challenge when N and/or M become very large. Challenges are the stuff of contests. Therefore, you are to make just such a computation given the following: 
GIVEN: 5 <= N <= 100; 5 <= M <= 100; M <= N 
Compute the EXACT value of: C = N! / (N-M)!M! 
You may assume that the final value of C will fit in a 32-bit Pascal LongInt or a C long. For the record, the exact value of 100! is: 
93,326,215,443,944,152,681,699,238,856,266,700,490,715,968,264,381,621, 468,592,963,895,217,599,993,229,915,608,941,463,976,156,518,286,253, 697,920,827,223,758,251,185,210,916,864,000,000,000,000,000,000,000,000 

Input

The input to this program will be one or more lines each containing zero or more leading spaces, a value for N, one or more spaces, and a value for M. The last line of the input file will contain a dummy N, M pair with both values equal to zero. Your program should terminate when this line is read.

Output

The output from this program should be in the form: 
N things taken M at a time is C exactly. 

Sample Input

100  6
20 5
18 6
0 0

Sample Output

100 things taken 6 at a time is 1192052400 exactly.
20 things taken 5 at a time is 15504 exactly.
18 things taken 6 at a time is 18564 exactly.
解题思路:和上题一样,n很小,最大只有100,直接暴力求解,类型全开long long,水过!
AC代码:
 #include<iostream>
using namespace std;
typedef long long LL;
LL n,k,m,ans;
int main(){
while(cin>>n>>k&&(n+k)){
m=k;//记录原来的取法数量
if(n-k<k)k=n-k;//取最小的取法数量
ans=;
for(LL i=;i<=k;++i)ans=ans*(n-i+)/i;
cout<<n<<" things taken "<<m<<" at a time is "<<ans<<" exactly."<<endl;
}
return ;
}

O - Combinations (组合数学)的更多相关文章

  1. Python itertools.combinations 和 itertools.permutations 等价代码实现

    最近编程时经常要用到排序组合的代码,想当年还抱着一些情况买了一本<组合数学>,不过现在这货也不知道被自己放哪里了,估计不会是垫桌子腿了吧. 由于去年去东北大学考博面试的时候遇到过可能涉及排 ...

  2. Combinations

    Given two integers n and k, return all possible combinations of k numbers out of 1 ... n. For exampl ...

  3. [LeetCode] Factor Combinations 因子组合

    Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write a func ...

  4. [LeetCode] Combinations 组合项

    Given two integers n and k, return all possible combinations of k numbers out of 1 ... n. For exampl ...

  5. [LeetCode] Letter Combinations of a Phone Number 电话号码的字母组合

    Given a digit string, return all possible letter combinations that the number could represent. A map ...

  6. Leetcode 254. Factor Combinations

    Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write a func ...

  7. 17. Letter Combinations of a Phone Number

    题目: Given a digit string, return all possible letter combinations that the number could represent. A ...

  8. LeetCode——Letter Combinations of a Phone Number

    Given a digit string, return all possible letter combinations that the number could represent. A map ...

  9. Combination Sum II Combinations

    https://leetcode.com/problems/combination-sum-ii/ 题目跟前面几道题很类似,直接写代码: class Solution { public: vector ...

随机推荐

  1. POJ 2101 Intervals 差分约束

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 27746   Accepted: 10687 Description You ...

  2. POJ2632 Crashing Robots 解题报告

    Description In a modernized warehouse, robots are used to fetch the goods. Careful planning is neede ...

  3. 手把手教你编写一个简单的PHP模块形态的后门

    看到Freebuf 小编发表的用这个隐藏于PHP模块中的rootkit,就能持久接管服务器文章,很感兴趣,苦无作者没留下PoC,自己研究一番,有了此文 0×00. 引言 PHP是一个非常流行的web ...

  4. Solid Edge性质管理者 如何获取装配体的BOM表 物料清单

    工具-性质管理者 在里面可以输入每个文件的文件号,版本号,作者等信息   右击点击显示性质,你还可以添加或删除文件属性   把需要的属性更改好了之后,可以输出装配体的所有零件信息到Excel中,点击工 ...

  5. 代理ip 测试

    Line #1218 : 101.232.208.245 - - [16/Jan/2018:02:47:34 +0800] "GET /?xltestdesfs HTTP/1.1" ...

  6. 8-13 canvas专题-阶段练习二(下)

    8-13 canvas专题-阶段练习二(下) <!DOCTYPE html> <html lang="zh-cn"> <head> <me ...

  7. [翻译]NUnit--Getting Started(二)

    Getting Started with NUnit 如果你打算开始学习,到下载页面选择一个NUnit版本.安装页面包含了安装说明. 开始NUnit阅读Quick Start页面.验证了一个C#银行应 ...

  8. 【POJ 1804】 Brainman

    [题目链接] 点击打开链接 [算法] 本题是一个很经典的问题 : 归并排序求逆序对数,可以用分治算法解决 分治,分而治之,分治算法的思想就是将一个问题转化为若干个子问题,对这些子问题分别求解,最后, ...

  9. python datatime日期和时间值模块

    datetime.time():是一个时间类,这个类接受4个参数,分别代表时,分,秒,毫秒.参数的默认值是为0 #!/usr/bin/env python #coding:utf8 import da ...

  10. MySQL-day1数据库的安装与介绍

    一.mysql的安装步骤 以5.7.20版本为例: 第1步: 第2步: 第3步: 第4步: 第5步: 第6步: 第7步: 第8步: 第9步: 第10步: 第11步: 第12步: 第13步: 第14步: ...