DNN结构构建:NAS网络结构搜索和强化学习、迁移学习
前言
谷歌推出的NASNet架构,用于大规模图像分类和识别。NASNet架构特点是由两个AutoML设计的Layer组成——Normal Layer and Reduction Layer,这样的效果是不再需要相关专家用human knowledge来搭建卷积网络架构,直接用RNN把Hyperparameter计算出来,这样就实现了网络结构自动学习。
论文:Learning Transferable Architectures for Scalable Image Recognition
强化学习
论文:《Neural ,Architecture Search with Reinforcement Learning》。 网站链接(开源代码): https:// github .com / tensorflow /models
论文中的核心是:利用Reinforcement Learning(强化学习)机制训练一个RNN(循环神经网路)controller(控制器)去自动产生一个神经网络,无需人为手动设计网络,设计出的网络在相关有权威的数据集上都取得了很好的成绩。看完论文后发现没有硬件资源根本是无法使得训练跑起来的,有钱就是任性,论文用了800个GPU跑起来的。
RNN在处理变长问题和生成变长式问题时得到广泛应用,RNN通过循环单元可以展开为一个多长度概率模型,把变长问题使用一个概率框架来表示。在进行模型生成时,可以使用同样的方法进行模型长度枚举和选择优化,生成变长模型或者可变模型。
关于RNN模型:DNN结构进化之RNN,DNN结构进化之LSTM,DNN结构进化之NTM/DNC。用于处理变长问题,发展出RNN;用以解决RNN梯度消失问题,发展出LSTM;NTM模型抽象LSTM的cell内存,模型可以直接训练简短的生成模式,比如copy、循环、排序、NGM文法描述等简单内存操作模式。
强化学习用于结构搜索:controller控制器给出个action,action去环境中做出动作并得到一个结果result,最后将result作为反馈信号反馈给controller控制器,controller控制器根据反馈值进行修改,然后一直迭代这个过程直到到达目标。
论文的思想是:通过一个controllerRNN在搜索空间(search space)中得到一个网络结构(论文中称为child network),然后用这个网络结构在数据集上训练,在验证集上测试得到准确率R,再将这个准确率回传给controller,controller继续优化得到另一个网络结构,如此反复进行直到得到最佳的结果,整个过程称为Neural Architecture Search。后面讲详细介绍整个流程,本总结主要是围绕生成CNN来介绍,论文中也可以生成RNN)。
模型生成过程
以卷积层的生成为例,使用RNN结构作为控制器用于生成conv层的超参数-conv个数、filter的高和宽、stride的高和宽等。下图为RNN的展开式结构,真正的RNN结构为一个recurrent单元。
控制一个RNN网络的unit的参数值,根据RNN生成变长串的一般法则,可以生成一个对应 结构的CNN网络描述。当然这个结构描述是变长的,长度和结构由RNN的参数决定,这样在一个可变CNN网络结构和RNN参数之间建立起一个函数映射。
根据论文的描述,使用所谓的anchor方法,一个RNN网络综合Conv层、Pooling层、SoftMax等多个RNN单元,综合为一个大的RNN网络,作为控制器。
反馈学习-训练RNN
文章描述联合RNN的优化方法和CNN的评价方法,使用CNN在测试集合上的表现作为CNN的评价,并把CNN的评价反传给RNN,用以训练RNN的结构和参数。
从整个过程可以看出,用以生成CNN的RNN结构的训练涉及到两部分,相对于一般使用数据直接训练RNN,多了一个CNN的自动生成,优化和测试,优化函数转化过程,直觉上需要极大的运算量,比训练通常RNN运算复杂度多几个数量级。
论文描述细节
Training details: The controller RNN is a two-layer LSTM with 35 hidden units on each layer.I t is trained with the ADAM optimizer (Kingma & Ba, 2015) with a learning rate of 0.0006. Theweights of the controller are initialized uniformly between -0.08 and 0.08.
For the distributed training ,we set the number of parameter server shards S to 20, the num be r of controller replicas K to100 and the number of child replicas m to 8, which means there are 800 networks being trained on 800 GPUs concurrently at any time.
生成模型用于迁移学习
迁移学习即是把一个领域的框架复用到另一个领域,两种应用领域具有特定的结构相似性,模型复用之时可以稍作修改或者稍加训练即可使用。
Training deta.............................
DNN结构构建:NAS网络结构搜索和强化学习、迁移学习的更多相关文章
- NASNet学习笔记—— 核心一:延续NAS论文的核心机制使得能够自动产生网络结构; 核心二:采用resnet和Inception重复使用block结构思想; 核心三:利用迁移学习将生成的网络迁移到大数据集上提出一个new search space。
from:https://blog.csdn.net/xjz18298268521/article/details/79079008 NASNet总结 论文:<Learning Transfer ...
- 用深度学习(DNN)构建推荐系统 - Deep Neural Networks for YouTube Recommendations论文精读
虽然国内必须FQ才能登录YouTube,但想必大家都知道这个网站.基本上算是世界范围内视频领域的最大的网站了,坐拥10亿量级的用户,网站内的视频推荐自然是一个非常重要的功能.本文就focus在YouT ...
- CARS: 华为提出基于进化算法和权值共享的神经网络结构搜索,CIFAR-10上仅需单卡半天 | CVPR 2020
为了优化进化算法在神经网络结构搜索时候选网络训练过长的问题,参考ENAS和NSGA-III,论文提出连续进化结构搜索方法(continuous evolution architecture searc ...
- 使用Elasticsearch 与 NEST 库 构建 .NET 企业级搜索
使用Elasticsearch 与 NEST 库 构建 .NET 企业级搜索 2015-03-26 dotNET跨平台 最近几年出现的云计算为组织和用户带来了福音.组织对客户的了解达到前所未有的透彻, ...
- Vue项目搭建流程 以及 目录结构构建
Vue项目搭建流程 以及 目录结构构建 一个小的Vue项目, 基于微信浏览器的移动端, 做了这么多的练习项目, 这一次准备记录下构建的过程, 以方便以后的调高效率 环境准备 操作系统 我的 windo ...
- ANN:DNN结构演进History—LSTM网络
为了保持文章系列的连贯性,参考这个文章: DNN结构演进History-LSTM_NN 对于LSTM的使用:谷歌语音转录背后的神经网络 摘要: LSTM使用一个控制门控制参数是否进行梯度计算,以此避免 ...
- ANN:DNN结构演进History—LSTM_NN
前言 语音识别和动作识别(Action.Activities) 等一些时序问题,通过微分方式可以视为模式识别方法中的变长模式识别问题.语音识别的基元为音素.音节,字母和句子模式是在时间轴上的变长序列 ...
- Evolution of Image Classifiers,进化算法在神经网络结构搜索的首次尝试 | ICML 2017
论文提出使用进化算法来进行神经网络结构搜索,整体搜索逻辑十分简单,结合权重继承,搜索速度很快,从实验结果来看,搜索的网络准确率挺不错的.由于论文是个比较早期的想法,所以可以有很大的改进空间,后面的很大 ...
- AI小白必读:深度学习、迁移学习、强化学习别再傻傻分不清
摘要:诸多关于人工智能的流行词汇萦绕在我们耳边,比如深度学习 (Deep Learning).强化学习 (Reinforcement Learning).迁移学习 (Transfer Learning ...
随机推荐
- Linux系统下ssh登陆很慢的解决办法
很多的Linux用户发现连接上Linux服务器在输入用户名之后还要再等一下才能输入密码,时间过长了,现在小白与大家分享一下如何解决ssh登陆问题的问题,希望对您有所帮助. 1.我们平时登陆Linux服 ...
- Ganglia API安装与使用
Ganglia监控本身没有提供API可供外部程序调用,只是依据ganglia监控的原理,能够通过分析gmetad的port的xml来直接获取metrics. Guardian已经在Github上公布了 ...
- C++MFC编程笔记day01 MFC介绍、创建MFC程序和重写消息处理
一.MFC概念和作用 1.全称Microsoft Foundation Class Library,我们称为微软基础类库,封闭了绝大部分的win32 Api函数,C++语法中的数据结构,程序的运行流程 ...
- 动态生成页面(一)——ASP.NET中Literal使用
在页面中加入内容时,假设是静态内容.无需使用容器,能够直接将标记作为HTML直接加入到页面中:可是,假设是动态内容,则必须借助容器将内容加入到页面中.典型的容器有:Label控件.Literal控件. ...
- MyEclipse+Tomcat+MAVEN+SVN项目完整环境搭建
这次换了台电脑,所以须要又一次配置一次项目开发环境,过程中的种种,记录下来,便于以后再次安装.同一时候给大家一个參考. 1.JDK的安装 首先下载JDK,这个从sun公司官网能够下载.依据自己的系统选 ...
- Android实战简易教程-第四十五枪(SlideSwitch-好看又有用的开关button)
开关button也是在项目中经经常使用到的控件,github上有开源的项目,我们研究下它的用法: 1.SlideButton.java: /* * Copyright (C) 2015 Quinn C ...
- 协方差矩阵与主成分分析PCA
今天看论文,作者是用主成分分析(PCA)的方法做的.仔细学习了一下,有一篇博客写的很好,介绍的深入浅出! 协方差:http://pinkyjie.com/2010/08/31/covariance/ ...
- hdu 5782(kmp+hash)
Cycle Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submi ...
- python 统计文件的个数
import os path = r'F:\1back\picture' #获取当前路径 count = 0 for root,dirs,files in os.walk(path): #遍历统计 i ...
- Could not find modernizr-2.6.2 in any of the sources GitLab: API is not accessible
Could not find modernizr-2.6.2 in any of the sources GitLab: API is not accessible bundle exec rake ...