算法优缺点:

优点:容易实现
缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢
使用数据类型:数值型数据

算法思想

k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去。

1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的函数关系判断k为多少的时候效果最好。另一种则是根据具体的需求确定,比如说进行衬衫尺寸的聚类你可能就会考虑分成三类(L,M,S)等

2.然后我们需要选择最初的聚类点(或者叫质心),这里的选择一般是随机选择的,代码中的是在数据范围内随机选择,另一种是随机选择数据中的点。这些点的选择会很大程度上影响到最终的结果,也就是说运气不好的话就到局部最小值去了。而且该算法对非球状簇的分类比较差。这里有两种处理方法,一种是多次取均值,另一种则是后面的改进算法(bisecting K-means)

3.终于我们开始进入正题了,接下来我们会把数据集中所有的点都计算下与这些质心的距离,把它们分到离它们质心最近的那一类中去。完成后我们则需要将每个簇算出平均值,用这个点作为新的质心。反复重复这两步,直到收敛我们就得到了最终的结果。

函数

loadDataSet(fileName)
从文件中读取数据集
distEclud(vecA, vecB)
计算距离,这里用的是欧氏距离,当然其他合理的距离都是可以的
randCent(dataSet, k)
随机生成初始的质心,这里是虽具选取数据范围内的点
kMeans(dataSet, k, distMeas=distEclud, createCent=randCent)
kmeans算法,输入数据和k值。后面两个事可选的距离计算方式和初始质心的选择方式
show(dataSet, k, centroids, clusterAssment)
可视化结果

#coding=utf-8
from numpy import * def loadDataSet(fileName):
dataMat = []
fr = open(fileName)
for line in fr.readlines():
curLine = line.strip().split('\t')
fltLine = map(float, curLine)
dataMat.append(fltLine)
return dataMat #计算两个向量的距离,用的是欧几里得距离
def distEclud(vecA, vecB):
return sqrt(sum(power(vecA - vecB, 2))) #随机生成初始的质心(ng的课说的初始方式是随机选K个点)
def randCent(dataSet, k):
n = shape(dataSet)[1]
centroids = mat(zeros((k,n)))
for j in range(n):
minJ = min(dataSet[:,j])
rangeJ = float(max(array(dataSet)[:,j]) - minJ)
centroids[:,j] = minJ + rangeJ * random.rand(k,1)
return centroids def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2)))#create mat to assign data points
#to a centroid, also holds SE of each point
centroids = createCent(dataSet, k)
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m):#for each data point assign it to the closest centroid
minDist = inf
minIndex = -1
for j in range(k):
distJI = distMeas(centroids[j,:],dataSet[i,:])
if distJI < minDist:
minDist = distJI; minIndex = j
if clusterAssment[i,0] != minIndex:
clusterChanged = True
clusterAssment[i,:] = minIndex,minDist**2
print centroids
for cent in range(k):#recalculate centroids
ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]#get all the point in this cluster
centroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to mean
return centroids, clusterAssment def show(dataSet, k, centroids, clusterAssment):
from matplotlib import pyplot as plt
numSamples, dim = dataSet.shape
mark = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']
for i in xrange(numSamples):
markIndex = int(clusterAssment[i, 0])
plt.plot(dataSet[i, 0], dataSet[i, 1], mark[markIndex])
mark = ['Dr', 'Db', 'Dg', 'Dk', '^b', '+b', 'sb', 'db', '<b', 'pb']
for i in range(k):
plt.plot(centroids[i, 0], centroids[i, 1], mark[i], markersize = 12)
plt.show() def main():
dataMat = mat(loadDataSet('testSet.txt'))
myCentroids, clustAssing= kMeans(dataMat,4)
print myCentroids
show(dataMat, 4, myCentroids, clustAssing) if __name__ == '__main__':
main()

参考链接:http://www.cnblogs.com/MrLJC/p/4127553.html

Kemans算法及其Python 实现的更多相关文章

  1. 八大排序算法的 Python 实现

    转载: 八大排序算法的 Python 实现 本文用Python实现了插入排序.希尔排序.冒泡排序.快速排序.直接选择排序.堆排序.归并排序.基数排序. 1.插入排序 描述 插入排序的基本操作就是将一个 ...

  2. 数据关联分析 association analysis (Aprior算法,python代码)

    1基本概念 购物篮事务(market basket transaction),如下表,表中每一行对应一个事务,包含唯一标识TID,和购买的商品集合.本文介绍一种成为关联分析(association a ...

  3. 机器学习算法与Python实践之(四)支持向量机(SVM)实现

    机器学习算法与Python实践之(四)支持向量机(SVM)实现 机器学习算法与Python实践之(四)支持向量机(SVM)实现 zouxy09@qq.com http://blog.csdn.net/ ...

  4. 机器学习算法与Python实践之(三)支持向量机(SVM)进阶

    机器学习算法与Python实践之(三)支持向量机(SVM)进阶 机器学习算法与Python实践之(三)支持向量机(SVM)进阶 zouxy09@qq.com http://blog.csdn.net/ ...

  5. 机器学习算法与Python实践之(二)支持向量机(SVM)初级

    机器学习算法与Python实践之(二)支持向量机(SVM)初级 机器学习算法与Python实践之(二)支持向量机(SVM)初级 zouxy09@qq.com http://blog.csdn.net/ ...

  6. 常用排序算法的python实现和性能分析

    常用排序算法的python实现和性能分析 一年一度的换工作高峰又到了,HR大概每天都塞几份简历过来,基本上一天安排两个面试的话,当天就只能加班干活了.趁着面试别人的机会,自己也把一些基础算法和一些面试 ...

  7. 分类算法——k最近邻算法(Python实现)(文末附工程源代码)

    kNN算法原理 k最近邻(k-Nearest Neighbor)算法是比较简单的机器学习算法.它采用测量不同特征值之间的距离方法进行分类,思想很简单:如果一个样本在特征空间中的k个最近邻(最相似)的样 ...

  8. 机器学习算法与Python实践之(五)k均值聚类(k-means)

    机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学 ...

  9. 狄克斯特拉算法(Python实现)

    概述 狄克斯特拉算法--用于在加权图中找到最短路径 ps: 广度优先搜索--用于解决非加权图的最短路径问题 存在负权边时--贝尔曼-福德算法 下面是来自维基百科的权威解释. 戴克斯特拉算法(英语:Di ...

随机推荐

  1. C++知识点总结(纯C++!!)

    1.重载函数是否能够通过函数返回值的类型不同来区分? 不可以.因为在C++编程中,函数的返回值可以忽略(不使用其返回值),程序中调用此时函数名相同和参数相同的两个函数对编译器和程序员来说是没有办法区分 ...

  2. python书籍推荐:量化投资:以Python为工具

    所属网站分类: 资源下载 > python电子书 作者:mimi 链接:http://www.pythonheidong.com/blog/article/451/ 来源:python黑洞网 内 ...

  3. 06 PhantomJS浏览器

    PhantomtomJS PhantomJS是一款无界面浏览器,其自动化操作流程和谷歌浏览器是一致的.由于是无界面的,为了能够展示自动化操作流程,PhantomJS为用户提供了一个截屏的功能,使用sa ...

  4. prototype 和function关系等总结

    js提供了一些内置类,如Array String Function等,只要有类就有原型. 1,function ,属性包括 arguments, caller,length,name ,prototy ...

  5. jQuery+ajax城市联动

    分享一下自己最近写的城市联动.技术使用ajax+jQuery实现. 首先请看前台的javascript代码. 以下是连个实现异步加载的方法. <script type="text/ja ...

  6. HA架构

    HA架构是个什么东西? 阅读文章:浅谈web应用的负载均衡.集群.高可用(HA)解决方案

  7. hrbust-1909理工门外的树,不用线段数,贪心思路~~

    理工门外的树 Time Limit: 1000 MS Memory Limit: 32768 K Total Submit: 605(125 users) Total Accepted: 154(11 ...

  8. POJ 3667 线段树的区间合并简单问题

    题目大意:有一排标号1-N的房间.操作一:询问是不是有连续长度为a的空房间,有的话住进最左边(占用a个房间)操作二:将[a,a+b-1]的房间清空(腾出b个房间)思路:记录每个区间中“靠左”“靠右”“ ...

  9. jsonp跨域请求实现示例

    网上看了很多关于jsonp的资料,发现在本机运行后实现不了,有的是有错漏,有的是说的比较含糊,接合自己的情况,整了一个可运行的示例: 前言: ajax请求地址:http://192.168.1.102 ...

  10. To_Date函数用法

    spl> select * from emp          where dates          between          to_date('2007-06-12 10:00:0 ...