题目链接:

  Hdu 2888 Check Corners

题目描述:

  给出一个n*m的矩阵,问以(r1,c1)为左上角,(r2,c2)为右下角的子矩阵中最大的元素值是否为子矩阵的顶点?

解题思路:

  二维区间最值查询,可以用二维的ST算法,dp[x][y][i][j]表示x轴上[x,x+(1<<i)-1]与y轴上[y-(1<<j)+1,y]组成的子矩阵中的最值。预处理的时候处理出来子矩阵的最值,查询的时候对于x,y轴上的查询区间[m, n],都要找到一个k,k满足 n-m+1 < 2^(k+1),假设x轴上为k1,y轴上为k2,然后把x轴上[r1,r2]分为[r1, r1+(1<<k1)-1]与[r2-(1<<k1)+1, r2],y轴类似。根据对x,y轴的划分把查询子矩阵分成4部分,然后选取4部分中的最值即可。

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; const int maxn = ;
int dmax[maxn][maxn][][];
int arr[maxn][maxn], LOG[maxn]; void init_RMQ (int n, int m)
{
LOG[] = -;
for (int i=; i<maxn; i++)
LOG[i] = i&(i-)?LOG[i-]:LOG[i-]+; for (int i=; i<=n; i++)
for (int j=; j<=m; j++)
dmax[i][j][][] = arr[i][j]; for (int i=; i<=LOG[n]; i++)
for (int j=; j<=LOG[m]; j++)
{
if (i== && j==) continue; for (int row=; row+(<<i)-<=n; row++)
for (int col=; col+(<<j)-<=m; col++)
if (i == )
dmax[row][col][i][j] = max (dmax[row][col][i][j-], dmax[row][col+(<<(j-))][i][j-]);
else
dmax[row][col][i][j] = max (dmax[row][col][i-][j], dmax[row+(<<(i-))][col][i-][j]);
}
}
int ST (int x1, int y1, int x2, int y2)
{//(x1,y1)为左上角,(x2,y2)为右下角
int k1 = LOG [x2 - x1 + ];
int k2 = LOG [y2 - y1 + ];
int mm1 = dmax [x1][y1][k1][k2];
int mm2 = dmax [x1][y2-(<<k2)+][k1][k2];
int mm3 = dmax [x2-(<<k1)+][y1][k1][k2];
int mm4 = dmax [x2-(<<k1)+][y2-(<<k2)+][k1][k2];
return max (max (mm1, mm2), max (mm3, mm4));
} int main ()
{
int n, m;
while (scanf ("%d %d", &n, &m) != EOF)
{
for (int i=; i<=n; i++)
for (int j=; j<=m; j++)
scanf ("%d", &arr[i][j]); init_RMQ(n, m); int x1, y1, x2, y2, q, ans;
scanf ("%d", &q);
while (q --)
{
scanf ("%d %d %d %d", &x1, &y1, &x2, &y2);
ans = ST (x1, y1, x2, y2);
printf ("%d ", ans); if (arr[x1][y1]==ans||arr[x1][y2]==ans||arr[x2][y1]==ans||arr[x2][y2]==ans)
printf ("yes\n");
else
printf ("no\n"); }
}
return ;
}

Hdu 2888 Check Corners (二维RMQ (ST))的更多相关文章

  1. HDU-2888 Check Corners 二维RMQ

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2888 模板题.解题思路如下(转载别人写的): dp[row][col][i][j] 表示[row,ro ...

  2. HDU 2888 Check Corners (模板题)【二维RMQ】

    <题目链接> <转载于 >>> > 题目大意: 给出一个N*M的矩阵,并且给出该矩阵上每个点对应的值,再进行Q次询问,每次询问给出代询问子矩阵的左上顶点和右下 ...

  3. HDU 2888:Check Corners(二维RMQ)

    http://acm.hdu.edu.cn/showproblem.php?pid=2888 题意:给出一个n*m的矩阵,还有q个询问,对于每个询问有一对(x1,y1)和(x2,y2),求这个子矩阵中 ...

  4. 【HDOJ 2888】Check Corners(裸二维RMQ)

    Problem Description Paul draw a big m*n matrix A last month, whose entries Ai,j are all integer numb ...

  5. hdu 2888 二维RMQ模板题

    Check Corners Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  6. hdu 2888 二维RMQ

    Check Corners Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  7. HDU2888 Check Corners(二维RMQ)

    有一个矩阵,每次查询一个子矩阵,判断这个子矩阵的最大值是不是在这个子矩阵的四个角上 裸的二维RMQ #pragma comment(linker, "/STACK:1677721600&qu ...

  8. 二维RMQ hdu 2888

    题目:点这里 题意:给出一个n*m的矩阵,然后又Q个询问:每个询问有x1,y1,x2,y2,x1,y1为子矩阵的左上角坐标,x2,y2为右上角的坐标.求此子矩阵中元素最大值,判断最大值是否在子矩阵四个 ...

  9. hduacm 2888 ----二维rmq

    http://acm.hdu.edu.cn/showproblem.php?pid=2888 模板题  直接用二维rmq 读入数据时比较坑爹  cin 会超时 #include <cstdio& ...

随机推荐

  1. I want a mysqldump –ignore-database option

    $ time mysqldump --databases `mysql --skip-column-names -e "SELECT GROUP_CONCAT(schema_name SEP ...

  2. JavaScript 的 MVP 框架 Riot.js

    Riot.js 详细介绍 Riot.js是一个客户端模型-视图-呈现(MVP)框架并且它非常轻量级甚至小于1kb.尽管他的大小令人难以置信,所有它能构建的有如下:一个模板引擎,路由,甚至是库和一个严格 ...

  3. windows下使用F2PY编译fortran文件的问题

    在windo系统下F2PY不支持gcc+gfortran的组合,解决的办法: 1.安装mingw和msys,在msys环境下使用F2PY调用gcc+gfortran进行编译 2.放弃F2PY,直接gf ...

  4. CGI的知识点

    CGI(Common Gateway Interface)是能让webserver和CGI脚本共同处理客户的请求的协议. 它的协议定义文档是http://www.ietf.org/rfc/rfc387 ...

  5. C++中extern “C”含义深层探索(在原作的基础上修改) .

    1. 引言 C++ 语言的创建初衷是“a better C” ,但是这并不意味着C++ 中类似C 语言的全局变量和函数所采用的编译和连接方式与C 语言完全相同.作为一种欲与C 兼容的语言,C++ 保留 ...

  6. sanic官方文档解析之蓝图

    1,蓝图(Blueprints) 蓝图可用于子路由的应用,代替增加路由的存在,蓝图的定义和增加路由的方法相似,灵活的在应用中注册,并且可插拔的方式. 尤其是在大型应用中使用蓝图的时候在你逻辑打断的地方 ...

  7. Spring Base

    1.在java开发领域,Spring相对于EJB来说是一种轻量级的,非侵入性的Java开发框架,曾经有两本很畅销的书<Expert one-on-one J2EE Design and Deve ...

  8. 「翻译」Unity中的AssetBundle详解(二)

    为AssetBundles准备资源 使用AssetBundles时,您可以随意将任何Asset分配给所需的任何Bundle.但是,在设置Bundles时,需要考虑一些策略.这些分组策略可以使用到任何你 ...

  9. ios 关于动画用法的总结

      #import "FirstVC.h" @implementation FirstVC /*     创建xib过程     1 创建xib(名字和类名相同)     2 文件 ...

  10. iOS UIView控件的常用属性和方法的总结

    一 UIVIew 常见属性1.frame 位置和尺寸(以父控件的左上角为原点(0,0))2.center 中点 (以父控件的左上角为原点(0,0))3.bounds 位置和尺寸(以自己的左上角为原点 ...