CIFAR100与VGG13实战
CIFAR100

13 Layers

cafar100_train
import tensorflow as tf
from tensorflow.keras import layers, optimizers, datasets, Sequential
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
conv_layers = [
# 5 units of conv + max polling
# unit 1
layers.Conv2D(64,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.Conv2D(64,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# unit2
layers.Conv2D(128,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.Conv2D(128,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# unit3
layers.Conv2D(256,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.Conv2D(256,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# unit4
layers.Conv2D(512,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.Conv2D(512,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# unit5
layers.Conv2D(512,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.Conv2D(512,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
]
def preprocess(x, y):
# [0-1]
x = tf.cast(x, dtype=tf.float32) / 255.
y = tf.cast(y, dtype=tf.int32)
return x, y
(x, y), (x_test, y_test) = datasets.cifar100.load_data()
y = tf.squeeze(y, axis=1)
y_test = tf.squeeze(y_test, axis=1)
print(x.shape, y.shape, x_test.shape, y_test.shape)
train_db = tf.data.Dataset.from_tensor_slices((x, y))
train_db = train_db.shuffle(1000).map(preprocess).batch(64)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test))
test_db = test_db.map(preprocess).batch(64)
def main():
# [b,32,32,3]-->[b,1,1,512]
conv_net = Sequential(conv_layers)
conv_net.build(input_shape=[None, 32, 32, 3])
# x = tf.random.normal([4, 32, 32, 3])
# out = conv_net(x)
# print(out.shape)
fc_net = Sequential([
layers.Dense(256, activation=tf.nn.relu),
layers.Dense(128, activation=tf.nn.relu),
layers.Dense(100, activation=None),
])
conv_net.build(input_shape=[None, 32, 32, 3])
fc_net.build(input_shape=[None, 512])
optimizer = optimizers.Adam(lr=1e-4)
# [1,2]+[3,4] = [1,2,3,4]
variables = conv_net.trainable_variables + fc_net.trainable_variables
for epoch in range(3):
for step, (x, y) in enumerate(train_db):
with tf.GradientTape() as tape:
# [b,32,32,3]
out = conv_net(x)
# flatten ==> [b,512]
out = tf.reshape(out, [-1, 512])
# [b,512] --> [b,100]
logits = fc_net(out)
# [b] --> [b,100]
y_onehot = tf.one_hot(y, depth=100)
# compute loss
loss = tf.losses.categorical_crossentropy(y_onehot,logits,from_logits=True)
loss = tf.reduce_mean(loss)
grads = tape.gradient(loss,variables)
optimizer.apply_gradients(zip(grads,variables))
if step % 100 ==0:
print(epoch,step,'loss:',float(loss))
total_num = 0
total_correct = 0
for x,y in test_db:
out = conv_net(x)
out = tf.reshape(out, [-1, 512])
logits = fc_net(out)
prob = tf.nn.softmax(logits, axis=1)
pred = tf.argmax(prob, axis=1)
pred = tf.cast(pred, dtype=tf.int32)
correct = tf.cast(tf.equal(pred, y), dtype=tf.int32)
correct = tf.reduce_sum(correct)
total_num += x.shape[0]
total_correct += int(correct)
acc = total_correct / total_num
print(epoch, 'acc:', acc)
if __name__ == '__main__':
main()
CIFAR100与VGG13实战的更多相关文章
- 基于tensorflow2.0和cifar100的VGG13网络训练
VGG是2014年ILSVRC图像分类竞赛的第二名,相比当年的冠军GoogleNet在可扩展性方面更胜一筹,此外,它也是从图像中提取特征的CNN首选算法,VGG的各种网络模型结构如下: 今天代码的原型 ...
- TensorFlow2教程(目录)
第一篇 基本操作 01 Tensor数据类型 02 创建Tensor 03 Tensor索引和切片 04 维度变换 05 Broadcasting 06 数学运算 07 前向传播(张量)- 实战 第二 ...
- Reading | 《TensorFlow:实战Google深度学习框架》
目录 三.TensorFlow入门 1. TensorFlow计算模型--计算图 I. 计算图的概念 II. 计算图的使用 2.TensorFlow数据类型--张量 I. 张量的概念 II. 张量的使 ...
- SSH实战 · 唯唯乐购项目(上)
前台需求分析 一:用户模块 注册 前台JS校验 使用AJAX完成对用户名(邮箱)的异步校验 后台Struts2校验 验证码 发送激活邮件 将用户信息存入到数据库 激活 点击激活邮件中的链接完成激活 根 ...
- GitHub实战系列汇总篇
基础: 1.GitHub实战系列~1.环境部署+创建第一个文件 2015-12-9 http://www.cnblogs.com/dunitian/p/5034624.html 2.GitHub实战系 ...
- MySQL 系列(四)主从复制、备份恢复方案生产环境实战
第一篇:MySQL 系列(一) 生产标准线上环境安装配置案例及棘手问题解决 第二篇:MySQL 系列(二) 你不知道的数据库操作 第三篇:MySQL 系列(三)你不知道的 视图.触发器.存储过程.函数 ...
- Asp.Net Core 项目实战之权限管理系统(4) 依赖注入、仓储、服务的多项目分层实现
0 Asp.Net Core 项目实战之权限管理系统(0) 无中生有 1 Asp.Net Core 项目实战之权限管理系统(1) 使用AdminLTE搭建前端 2 Asp.Net Core 项目实战之 ...
- 给缺少Python项目实战经验的人
我们在学习过程中最容易犯的一个错误就是:看的多动手的少,特别是对于一些项目的开发学习就更少了! 没有一个完整的项目开发过程,是不会对整个开发流程以及理论知识有牢固的认知的,对于怎样将所学的理论知识应用 ...
- asp.net core 实战之 redis 负载均衡和"高可用"实现
1.概述 分布式系统缓存已经变得不可或缺,本文主要阐述如何实现redis主从复制集群的负载均衡,以及 redis的"高可用"实现, 呵呵双引号的"高可用"并不是 ...
随机推荐
- bzoj 3196 Tyvj 1730 二逼平衡树【线段树 套 splay】
四舍五入就是个暴力. 对于线段树的每个区间都开一棵按权值排序的splay 对于第二个操作,二分一下,每次查询mid的排名,复杂度 $ O(nlog(n)^{3}) $ 其余的操作都是$ O(nlog( ...
- java多线程模拟龟兔赛跑
让乌龟和兔子在同一个赛道从1开始跑到100,看看谁更快. public class Racer implements Runnable{ private static String winner;// ...
- mysql 安装命令
mysqld install MySQL --defaults-file="D:\worksoft\mysql-5.7.17-winx64\my-default.ini" D:\w ...
- layui配置
layui是一个全局变量,可以在任何地方访问到 layui.config 方法主配置信息(经测试好像不能添加额外属性) layui.setter读取主配置属性 layui.extend 方法增加主配置 ...
- pytest的参数化
参数化有两种方式: 1. @pytest.mark.parametrize 2.利用conftest.py里的 pytest_generate_tests 1中的例子如下: @pytest.mark. ...
- django 网站项目测试
视图和 URL 配置: 在先前创建的 meishiweb目录下的 meishiweb 目录新建一个 view.py 文件,并输入代码: 此时在浏览器即可访问: 证明已经成功 我们也可以修改成以下的规则 ...
- AngularJs调用NET MVC 控制器中的函数进行后台操作
题目中提到的控制器指的是.NET MVC的控制器,不是angularjs的控制器. 首先看主页面的代码: <!DOCTYPE html> <html> <head> ...
- 自定义View(11)**在onDraw中使用矩阵Matrix
1.代码示例 1.1 效果 原图 : 其尺寸为162 x 251,示例中的红点是变形的锚点. 变形之后: 1.2 代码 package com.e.weixin.session.view; impor ...
- CentOS安装GlassFish4.0 配置JDBC连接MySQL
转自:http://linux.it.net.cn/CentOS/course/2014/0724/3319.html 版本glassfish-4.0.zip 1.解压,拷贝到指定安装路径 unz ...
- 总结用CoreText绘制文本时遇到的问题以及解决办法
关于CoreText不做解释.用的人自然知道这个是干什么的. 功能非常强大,可以绘制文本,图片等. 这次用的Xcode7.0的版本.所以之前很多方法,现在不能用.也不是不能用,就是有黄色警告很不爽. ...