奇数码问题

时间限制: 1 Sec  内存限制: 128 MB

题目描述

你一定玩过八数码游戏,它实际上是在一个3*3的网格中进行的,1个空格和1~8这8个数字恰好不重不漏地分布在这3*3的网格中。
例如:
5 2 8
1 3 _
4 6 7
在游戏过程中,可以把空格与其上、下、左、右四个方向之一的数字交换(如果存在)。
例如在上例中,空格可与左、上、下面的数字交换,分别变成:
5 2 8       5 2 _      5 2 8
1 _ 3       1 3 8      1 3 7
4 6 7       4 6 7      4 6 _

奇数码游戏是它的一个扩展,在一个n*n的网格中进行,其中n为奇数,1个空格和1~n*n-1这n*n-1个数恰好不重不漏地分布在n*n的网格中。
空格移动的规则与八数码游戏相同,实际上,八数码就是一个n=3的奇数码游戏。

现在给定两个奇数码游戏的局面,请判断是否存在一种移动空格的方式,使得其中一个局面可以变化到另一个局面。

输入

多组数据,对于每组数据:
第1行一个整数n,n<500,n为奇数。
接下来n行每行n个整数,表示第一个局面。
接下来n行每行n个整数,表示第二个局面。
局面中每个整数都是0~n*n-1之一,其中用0代表空格,其余数值与奇数码游戏中的意义相同,保证这些整数的分布不重不漏。

输出

对于每组数据,若两个局面可达,输出TAK,否则输出NIE。

样例输入

3
1 2 3
0 4 6
7 5 8
1 2 3
4 5 6
7 8 0
1
0
0

样例输出

TAK
TAK

http://www.cnblogs.com/yuyixingkong/archive/2013/09/23/3335667.html

八数码问题的有解无解的结论:

一个状态表示成一维的形式,求出除0之外所有数字的逆序数之和,也就是每个数字前面比它大的数字的个数的和,称为这个状态的逆序。

若两个状态的逆序奇偶性相同,则可相互到达,否则不可相互到达。

N×N的棋盘,N为奇数时,与八数码问题相同。

N为偶数时,空格每上下移动一次,奇偶性改变。称空格位置所在的行到目标空格所在的行步数为空格的距离(不计左右距离),若两个状态的可相互到达,则有,两个状态的逆序奇偶性相同且空格距离为偶数,或者,逆序奇偶性不同且空格距离为奇数数。否则不能。

#include<bits/stdc++.h>
#define N 252500
using namespace std;
int a[],b[];
int n; void updata(int x[],int pos,int v)
{
while(pos<=N)
{
x[pos]+=v;
pos+=pos&(-pos);
}
}
int sum(int x[],int pos)
{
int ans=;
while(pos>)
{
ans+=x[pos];
pos-=pos&(-pos);
}
return ans;
} long long f(int x[])
{
int c[];
long long ans=;
for(int i=; i<=n; i++)
{
if(x[i]!=)
{
ans+=sum(c,N)-sum(c,x[i]);
updata(c,x[i],);
} }
return ans;
} int main()
{
while(scanf("%d",&n)==)
{
n=n*n;
for(int i=; i<=n; i++)
scanf("%d",&a[i]);
for(int i=; i<=n; i++)
scanf("%d",&b[i]); if(f(a)%==f(b)%)
printf("TAK\n");
else
printf("NIE\n");
}
return ;
}

N*N数码问题的更多相关文章

  1. 基于小脚丫的ADC081S101 电压采集595数码管显示

    RTL结构图 采集模块运用SPI 通讯 MISO方式收集数据 module ad_collect(input sddata,input rst_n,output reg cs,output reg s ...

  2. CH Round #72 奇数码问题[逆序对 观察]

    描述 你一定玩过八数码游戏,它实际上是在一个3*3的网格中进行的,1个空格和1~8这8个数字恰好不重不漏地分布在这3*3的网格中. 例如:5 2 81 3 _4 6 7 在游戏过程中,可以把空格与其上 ...

  3. js基础练习三之数码时钟

    这章节有两个实例,1,定时器的使用; 2,数码时钟; 用到的js知识:定时器,Date对象. >>>>>定时器 开启定时器: setInterval 间隔型 setTim ...

  4. 10-8位7段数码管驱动实验——小梅哥FPGA设计思想与验证方法视频教程配套文档

    芯航线--普利斯队长精心奉献   实验目的: 1.实现FPGA驱动数码管动态显示: 2.使用In system sources and probes editor工具,输入需要显示在数码管上的的数据, ...

  5. A*算法 -- 八数码问题和传教士过河问题的代码实现

    前段时间人工智能的课介绍到A*算法,于是便去了解了一下,然后试着用这个算法去解决经典的八数码问题,一开始写用了挺久时间的,后来试着把算法的框架抽离出来,编写成一个通用的算法模板,这样子如果以后需要用到 ...

  6. Verilog HDL那些事_建模篇笔记(实验七:数码管电路驱动)

    1.同步动态扫描 多个数码管的显示采用的是同步动态扫描方法,同步动态扫描指的是:行信号和列信号同步扫描,是一种并行操作. 2.数码管驱动电路实现思路      如果要求数码管显示我们想要的数字,首先需 ...

  7. [51单片机] 以从0开始做4位8段共阴数码管3461AS驱动谈细节决定高质量DIY

    目录 1)问题产生 2)失败尝试 3)最终方案 4)使用方法 5)知识共享 1)问题产生 在上一篇“以PWM控制直流电机为例建一个简单的51工程框架”中已向大家介绍了一个封装好的8位8段数码管的驱动( ...

  8. nios II--实验7——数码管IP软件部分

    软件开发 首先,在硬件工程文件夹里面新建一个software的文件夹用于放置软件部分:打开toolsàNios II 11.0 Software Build Tools for Eclipse,需要进 ...

  9. nios II--实验7——数码管IP硬件部分

    数码管 硬件开发 新建原理图 打开Quartus II 11.0,新建一个工程,File -> New Project Wizard…,忽略Introduction,之间单击 Next>  ...

  10. 八数码问题:C++广度搜索实现

    毕竟新手上路23333,有谬误还请指正. 课程设计遇到八数码问题(这也是一坨),也查过一些资料并不喜欢用类函数写感觉这样规模小些的问题没有必要,一开始用深度搜索却发现深搜会陷入无底洞,如果设定了深度限 ...

随机推荐

  1. Web项目之Django实战问题剖析

    基于AdminLTE-master模板的后台管理系统 左侧菜单栏的二级标签设计 面包屑 Django文件上传 后台管理系统CRM项目设计流程分析

  2. 当然,perl等脚本服务器是一般默认安装了,你入侵了一台主机,总不能先装配 Java 环境然后再开干吧?

    转自:https://www.zhihu.com/question/20173592 当然,perl等脚本服务器是一般默认安装了,你入侵了一台主机,总不能先装配 Java 环境然后再开干吧?

  3. Hibernate 中批量处理数据

    一.批量处理操作 批量处理数据是指在一个事务场景中处理大量数据.在应用程序中难以避免进行批量操作,Hibernate提供了以下方式进行批量处理数据: (1)使用HQL进行批量操作     数据库层面 ...

  4. Bootstrap历练实例:基本按钮组

    <!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...

  5. Bootstrap select(选择列表)

    当您想让用户从多个选项中进行选择,但是默认情况下只能选择一个选项,则使用选择框 1.使用<select>展示列表选项 2.使用multiple="multiple"允许 ...

  6. ios之UIPopoverController

    UIPopoverController是iPad上的iOS开发会常用到的一个组件(在iPhone设备上不允许使用),这个组件上手很简单,因为他的显示方法很少,而且参数简单,但我在使用过程中还常碰到各种 ...

  7. 【tarjan 拓扑排序 dp】bzoj1093: [ZJOI2007]最大半连通子图

    思维难度不大,关键考代码实现能力.一些细节还是很妙的. Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于 ...

  8. layer的iframe层的传参和回参

    从父窗口传参给iframe,参考://https://yq.aliyun.com/ziliao/133150 从iframe回参给父窗口,参考:https://www.cnblogs.com/jiqi ...

  9. GIMP里的Path移动,旋转,翻转操作

    1/Path的移动: 快捷键Ctrl+Move Tool 2/Path的旋转: 选择Rotate Tool,在Path中选择,出现十字圈. Angel下的滑块调节一定的角度,在合适的位置即可. 3/P ...

  10. CSS3-弹性盒模型-FlexBox

    Flex容器属性 display 定义一个Flex容器,根据其取的值来决定是内联还是块.Flex容器会为其内容建立新的伸缩格式化上下文. .container { display: flex; /* ...