POJ——2449Remmarguts' Date(A*+SPFA)
| Time Limit: 4000MS | Memory Limit: 65536K | |
| Total Submissions: 26504 | Accepted: 7203 |
Description
"Prince Remmarguts lives in his kingdom UDF – United Delta of Freedom. One day their neighboring country sent them Princess Uyuw on a diplomatic mission."
"Erenow, the princess sent Remmarguts a letter, informing him that she would come to the hall and hold commercial talks with UDF if and only if the prince go and meet her via the K-th shortest path. (in fact, Uyuw does not want to come at all)"
Being interested in the trade development and such a lovely girl, Prince Remmarguts really became enamored. He needs you - the prime minister's help!
DETAILS: UDF's capital consists of N stations. The hall is numbered S, while the station numbered T denotes prince' current place. M muddy directed sideways connect some of the stations. Remmarguts' path to welcome the princess might include the same station
twice or more than twice, even it is the station with number S or T. Different paths with same length will be considered disparate.
Input
sideway from A-th station to B-th station with time T.
The last line consists of three integer numbers S, T and K (1 <= S, T <= N, 1 <= K <= 1000).
Output
Sample Input
2 2
1 2 5
2 1 4
1 2 2
Sample Output
14
以前对A*有所耳闻,看得懂但是不知道如何实现,然后通过这道题有了一点理解……,这题做了两遍,第一次是看着别人的代码写的,第二次隔了段时间自己按照自己的理解写了下1A,理解一个算法还是非常重要的……
A*以我的理解就是给搜索算法一个大致的导向,尽量不往不必要的方向去搜索,也许也是因此叫做启发式搜索算法,就拿普通BFS比较吧,也就是一个退化了的A*,没有任何的导向,完全按照压入队列的时间顺序进行搜索,比如一个任意一点都可以站立的地图,人在中间,而目的地在右上角,显然BFS在到达目的地之前一定会对地图中大部分包括跟目的地相反方向的那些地方都搜索过,即越走越远,但是BFS不知道这些,只知道一层一层地扩展,即使走反了,如果有用标记或者染色,会发现地图上大部分无用、完全不必要的地区都被标记或染色过……因此BFS在数据范围较大的时候是比较慢的
而A*不一样,比BFS多了一个估价(启发)函数。先引用别的博主的一段话
所谓A*就是启发式搜索..说白了就是给BFS搜索一个顺序使得搜索更加合理减少无谓的搜索..如何来确定搜索的顺序?..也就是用一个值来表示这个值为f[x]..每次搜索取f[x]最小的进行拓展...f[x]=h[x]+g[x]其中h[x]就是当前搜索时的实际代价...估价函数要小于是对当前点到目标的代价的估计..这个估计必须小于等于实际值~~否则会出错...A*的关键也就是构造g[x]..
在图的搜索里面构造g[x]用的比较多的是欧氏距离、曼哈顿距离、切比雪夫距离(这个比较高端感觉不太用的上……)上面的紫色字体非常重要,这就是为什么要用反向的SPFA来做这题的原因,因为反着从T的单源的最短路放到正向的就不一定是某一点Si的最短路了,就可以保证反着是一定小于等于实际值的。这题还有一个小坑点就是如果一开始起点就是终点,那必须要绕一圈再回来,即k短路不能一开始就为0,VIS数组也不需要,首先这是k短路,其次这是A*启发式的,不会无脑遍历……然后就差不多可以做了……
代码:
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<cstdio>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f
#define MM(x,y) memset(x,y,sizeof(x))
typedef pair<int,int> pii;
typedef long long LL;
const double PI=acos(-1.0);
const int M=100010;
const int N=10010;
struct info
{
int to;
int pre;
int dx;
};
struct A
{
int cur;
int g;
int h;
bool operator<(const A &b)const
{
return g+h>b.g+b.h;
}
};
info E[M],rE[M];
int head[M],rhead[M],d[N],cnt,rcnt;
priority_queue<pii>Q;
priority_queue<A>Qa;
void init()
{
MM(head,-1);
MM(rhead,-1);
MM(d,INF);
while (!Q.empty())
Q.pop();
while (!Qa.empty())
Qa.pop();
cnt=rcnt=0;
}
void add(info edge[],int &c,int Head[],int s,int t,int d)
{
edge[c].to=t;
edge[c].dx=d;
edge[c].pre=Head[s];
Head[s]=c++;
}
void spfa(int s)
{
d[s]=0;
Q.push(pii(-d[s],s));
while (!Q.empty())
{
int now=Q.top().second;
Q.pop();
for (int i=rhead[now]; ~i; i=rE[i].pre)
{
int v=rE[i].to;
if(d[v]>d[now]+rE[i].dx)
{
d[v]=d[now]+rE[i].dx;
Q.push(pii(-d[v],v));
}
}
}
}
int main(void)
{
int n,m,i,j,a,b,c,s,t,k;
while (~scanf("%d%d",&n,&m))
{
init();
for (i=0; i<m; i++)
{
scanf("%d%d%d",&a,&b,&c);
add(rE,rcnt,rhead,b,a,c);
add(E,cnt,head,a,b,c);
}
scanf("%d%d%d",&s,&t,&k);
spfa(t);
int r=-1;
A S;
S.cur=s;
S.g=0;
S.h=d[s];
Qa.push(S);
if(s==t)
k++;
while (!Qa.empty())
{
A now=Qa.top();
Qa.pop();
if(now.cur==t)
{
if(--k==0)
{
r=now.g;
break;
}
}
for (i=head[now.cur]; ~i; i=E[i].pre)
{
A Next=now;
int v=E[i].to;
Next.cur=v;
Next.g+=E[i].dx;
Next.h=d[v];
Qa.push(Next);
}
}
printf("%d\n",r);
}
return 0;
}
POJ——2449Remmarguts' Date(A*+SPFA)的更多相关文章
- POJ:2449-Remmarguts' Date(单源第K短路)
Remmarguts' Date Time Limit: 4000MS Memory Limit: 65536K Total Submissions: 33081 Accepted: 8993 Des ...
- POJ 2449:Remmarguts' Date(A* + SPFA)
题目链接 题意 给出n个点m条有向边,源点s,汇点t,k.问s到t的第k短路的路径长度是多少,不存在输出-1. 思路 A*算法是启发式搜索,通过一个估价函数 f(p) = g(p) + h(p) ,其 ...
- POJ 3279 Fliptile(翻格子)
POJ 3279 Fliptile(翻格子) Time Limit: 2000MS Memory Limit: 65536K Description - 题目描述 Farmer John kno ...
- POJ - 3308 Paratroopers(最大流)
1.这道题学了个单词,product 还有 乘积 的意思.. 题意就是在一个 m*n的矩阵中,放入L个敌军的伞兵,而我军要在伞兵落地的瞬间将其消灭.现在我军用一种激光枪组建一个防御系统,这种枪可以安装 ...
- POJ 1274 The Perfect Stall || POJ 1469 COURSES(zoj 1140)二分图匹配
两题二分图匹配的题: 1.一个农民有n头牛和m个畜栏,对于每个畜栏,每头牛有不同喜好,有的想去,有的不想,对于给定的喜好表,你需要求出最大可以满足多少头牛的需求. 2.给你学生数和课程数,以及学生上的 ...
- poj 1364 King(差分约束)
题意(真坑):傻国王只会求和,以及比较大小.阴谋家们想推翻他,于是想坑他,上交了一串长度为n的序列a[1],a[2]...a[n],国王作出m条形如(a[si]+a[si+1]+...+a[si+ni ...
- poj 1201 Intervals(差分约束)
做的第一道差分约束的题目,思考了一天,终于把差分约束弄懂了O(∩_∩)O哈哈~ 题意(略坑):三元组{ai,bi,ci},表示区间[ai,bi]上至少要有ci个数字相同,其实就是说,在区间[0,500 ...
- POJ 3259 Wormholes (Bellman_ford算法)
题目链接:http://poj.org/problem?id=3259 Wormholes Time Limit: 2000MS Memory Limit: 65536K Total Submis ...
- POJ 1006 Biorhythms (中国剩余定理)
在POJ上有译文(原文右上角),选择语言:简体中文 求解同余方程组:x=ai(mod mi) i=1~r, m1,m2,...,mr互质利用中国剩余定理令M=m1*m2*...*mr,Mi=M/mi因 ...
随机推荐
- 再谈Android AsyncTask的优缺点
导语:之前做习惯了Framework层的开发,今天在武汉斗鱼公司面试APP客户端的开发,其中一道题是讲述Asynctask的优缺点,我靠,我只是知道有这么一个东西,会用而已,看来之前的生活太过于安逸, ...
- React Native 手工搭建环境 之iOS篇
常识 React native 开发服务器 在开发时,我们的框架是这样的:  当正式发布进入到生产环境时,开发服务器上所有的js文件将会被编译成包的形式,直接嵌入到客户端内.这时,已经不再需要开发服 ...
- C++拾遗(四)——顺序容器
之前一篇博文(<初窥标准库>)简单了解了一种最常用的顺序容器:vector类型.本文将对该文内容进行进一步的学习和完善,继续讨论标准库提供的顺序容器类型.所谓顺序容器,即将单一类型的元素聚 ...
- 使用 PHPUnit 和 Selenium 进行测试
适用于 PHP 的 NetBeans IDE 支持 PHPUnit 自动测试.通过 PHPUnit,NetBeans IDE 可为 PHP 提供代码覆盖率,这与 IDE 为 Python 提供的代码覆 ...
- Android学习总结(十一)———— Adapter的使用
一.Adapter的基本概念 UI控件都是跟Adapter(适配器)打交道的,了解并学会使用这个Adapter很重要, Adapter是用来帮助填充数据的中间桥梁,简单点说就是:将各种数据以合适的形式 ...
- 微信程序开发系列教程(四)使用微信API创建公众号自定义菜单
大家可能经常看到一些微信公众号具有功能强大的自定义菜单,点击之后可以访问很多有用的功能. 这篇教程就教大家如何动手做一做. 这个教程最后实现的效果是:创建一个一级菜单"UI5", ...
- iOS,APP退到后台,获取推送成功的内容并且语音播报内容。
老铁,我今天忙了一下午就为解决这个问题,网上有一些方法,说了一堆关于这个挂到后台收到推送并且获得推送内容的问题,有很多人都说APP挂到后台一会就被杀死.但实际上可以有办法解决的. WechatIMG3 ...
- synchronized关键字修饰非静态方法与静态方法的区别
这里我们先创建ObjLock类,并实现Runnable接口.并创建一个Demo类,具有被synchronized关键字修饰的非静态方法与静态方法. 非静态方法 public class ObjLock ...
- 设置与使用SQL Server的字符集(Collation,即排序规则)
目录 目录 正确认识SQL Server的字符集 选择合适的SQL Server字符集 错误使用SQL Server的字符集 参考资料 正确认识SQL Server的字符集 SQL Server作为一 ...
- js采用正则表达式获取地址栏参数
getQueryString:function(name) { var reg = new RegExp("(^|&)"+ name +"=([^&]*) ...