【2018.10.15】WZJ笔记(数论)
1. 证明:对于任意质数$p\gt 3$,$p^2-1$能被$24$整除。
证:平方差公式,$p^2-1 = (p-1)(p+1)$。
再把$24$分解质因数$2^3*3$。
三个相邻的自然数中至少有一个数是$3$的倍数,而$p$是质数不可能有因子$3$,所以$p-1,p+1$中必有一个数有因子$3$。
$p$是质数,所以一定是奇数,那$p-1,p+1$就是偶数,而相邻两个偶数中至少有一个是$4$的倍数,所以两个数至少有一个有$1$个因子$2$,另一个有$2$个因子$2$。
所以$(p-1)(p+1)$是$2^3*3=24$的倍数,得证。
2. 把$gcd$卡成$log$级别的。
使用斐波那契数列,$gcd(fib(n),fib(n-1))=gcd(fib(n-1),fib(n)\mod fib(n-1))=gcd(fib(n-1),fib(n-2))$。
事实上有一个预处理$O(n)$,查询$O(1)$的求gcd做法,WZJ下次课讲。
3. 对于任意正整数$n$与质数$p\mod 4=3$,有$p$不整除$n^2+1$。
反证法,假设能整除。
$n^2\equiv -1 (\mod p)$
$(n^2)^\frac{p-1}{2} \equiv (-1)^\frac{p-1}{2} (\mod p)$
结合题意可知$\frac{p-1}{2}$是奇数。所以$n^{p-1}\equiv -1 (\mod p)$
而我们想到费马小定理的$n^{p-1}\equiv -1 (\mod p)$。
但为什么可以转化成费马小定理呢?$p$是质数,但$n,p$一定互质么?
首先$p$是质数,所以一定不是$n$的倍数;其次,如果$n$是$p$的倍数,$n^2+1$一定不是$p$的倍数,就直接证明原题不能整除了(原因:两个相邻的正整数互质)。
所以$n,p$互质,可以套用费马小定理。
结合两者可得$1\equiv -1 (\mod p)$。
$p$不能是2,所以不存在满足的情况。
综上,不能整除。
4. 原题hdu4497。
【2018.10.15】WZJ笔记(数论)的更多相关文章
- 2018.10.15 NOIP训练 hyc的等比数列(数论+枚举)
传送门 一道不错的枚举题. 显然桶排序之后瞎枚举一波. 考虑枚举首项和末项,假设首项除去一个最大的平方因子得到的结果为xxx. 那么末项一定等于xxx乘上一个平方数. 于是我们枚举首项,算出xxx然后 ...
- 【2018.10.15】noip模拟赛Day1
题面 wzj的题解 T1 随便搜 #include<bits/stdc++.h> #define ll long long using namespace std; inline int ...
- 梦想CAD控件 2018.10.15更新
下载地址: http://www.mxdraw.com/ndetail_10105.html 1. 完善com接口的ToCurves函数,转换CAD文字,多行文字到曲线 2. 修改DrawImage接 ...
- 2018.10.15 bzoj3564: [SHOI2014]信号增幅仪(坐标处理+最小圆覆盖)
传送门 省选考最小圆覆盖? 亦可赛艇(你们什么都没看见) 在大佬的引领下成功做了出来. 就是旋转坐标使椭圆的横轴跟xxx轴平行. 然后压缩横坐标使得其变成一个圆. 然后跑最小覆盖圆就可以了. 注意题目 ...
- 2018.10.15 bzoj4570: [Scoi2016]妖怪(凸包)
传送门 不得不说这题有点东西啊. 看到题第一眼二分,用二次函数求范围来进行checkcheckcheck,20分滚粗了233. 于是开始思考正解. 发现可以把每只怪物的二元组属性看成二维坐标. 这时对 ...
- 2018.10.15 bzoj4445: [Scoi2015]小凸想跑步(半平面交)
传送门 话说去年的省选计算几何难度跟前几年比起来根本不能做啊(虽然去年考的时候并没有学过计算几何) 这题就是推个式子然后上半平面交就做完了. 什么? 怎么推式子? 先把题目的概率转换成求出可行区域. ...
- 2018.10.15 loj#6010. 「网络流 24 题」数字梯形(费用流)
传送门 费用流经典题. 按照题目要求建边. 为了方便我将所有格子拆点,三种情况下容量分别为111,infinfinf,infinfinf,费用都为validi,jval_{id_{i,j}}valid ...
- 2018.10.15 loj#6013. 「网络流 24 题」负载平衡(费用流)
传送门 费用流sb题. 直接从sss向每个点连边,容量为现有物品量. 然后从ttt向每个点连边,容量为最后库存量. 由于两个点之间可以互相任意运送物品,因此相邻的直接连infinfinf的边就行了. ...
- 2018.10.15 NOIP训练 水流成河(换根dp)
传送门 换根dp入门题. 貌似李煜东的书上讲过? 不记得了. 先推出以1为根时的答案. 然后考虑向儿子转移. 我们记f[p]f[p]f[p]表示原树中以ppp为根的子树的答案. g[p]g[p]g[p ...
随机推荐
- SQL2005中使用backup、restore来备份和恢复数据库
在SQL2005数据库中利用SQL语句进行数据备份与还原: 备份backup:backup database 数据库名称 tO disk = 备份路径例:BACKUP DATABASE test TO ...
- asp.net core mvc 异步表单(Ajax.BeginForm)
.net core中已经没有beginform扩展函数了. 通过Bower引入jquery-ajax-unobtrusive: <script src="~/lib/jquery-aj ...
- ubuntu 14.04 离线部署docker
hett@hett-virtual-machine:~$ lsb_release -aNo LSB modules are available.Distributor ID: UbuntuDes ...
- C程序(2)
- CPP-基础:TCHAR
目 录 定义 使用原理 1.定义 TCHAR是通过define定义的字符串宏[1] 2.使用原理 因为C++支持两种字符串,即常规的ANSI编码(使用""包裹)和Unicode编码 ...
- js parse_url 引发的
原文链接:https://www.w3.org/TR/2011/WD-html5-20110525/origin-0.html 这里只是做下记录: 5.3 Origin — HTML5 li, dd ...
- Avada v5.0.6 最新版本破解教程如下:
Avada v5.0.6 最新版本破解教程如下: .找到\themes\Avada\includes\avada-envato-api.php文件,注释掉如下两行代码 $response_code = ...
- java上传、下载、删除ftp文件
一共三个类,一个工具类Ftputil.,一个实体类Kmconfig.一个测试类Test 下载地址:http://download.csdn.net/detail/myfmyfmyfmyf/669710 ...
- C++后台知识点总结(一)
C++基础部分: 1.数组和指针的区别 (1)数组本身体现出来的就是一个 指针常量的 “特性”,即不能对数组的首地址进行修改,内存上的地址就已经是确定了的.而指针本身是一个变量,他指向了一个地址,这个 ...
- Flux reference
https://facebook.github.io/flux/docs/dispatcher.html#content 首先安装 npm install --save flux Dispatcher ...