SG函数的定义:

g(x) = mex ( sg(y) |y是x的后继结点 )

其中mex(x)(x是一个自然是集合)函数是x关于自然数集合的补集中的最小值,比如x={0,1,2,4,6} 则mex(x)=3;

什么是后继结点?

所谓后继结点就是当前结点经过一个操作可以变成的状态。比如对于娶4石子游戏,假如每次可以取的数目是1,2,4,当前的石子数目也就是当前状态是5,那么5的后继结点就是{5-1, 5-2, 5-4}={4,3,1};

如果5的三个后继结点的SG函数值分别为0,1,3,那么5的SG值就是集合{0,1,3}的补集的最小元素,也就是2。

关于整个游戏的sg值之和sum,定义sum=sg1 ^ sg2 ^ sg3 ^ ……sgn.  其中^表示按位异或运算。

结论:一个游戏的初始局面是必败态当且仅当sum=0。

一篇非常好的关于SG值的论文:http://www.cnitblog.com/weiweibbs/articles/42735.html

SG值打表模板:

//f[]:可以取走的石子个数
//sg[]:0~n的SG函数值
//hash[]:mex{}
int f[N],sg[N],hash[N];
void getSG(int n)
{
int i,j;
memset(sg,0,sizeof(sg));
for(i=1;i<=n;i++)
{
memset(hash,0,sizeof(hash));
for(j=1;f[j]<=i;j++)
hash[sg[i-f[j]]]=1;
for(j=0;j<=n;j++) //求mes{}中未出现的最小的非负整数
{
if(hash[j]==0)
{
sg[i]=j;
break;
}
}
}
}

HDU1848

链接:http://acm.hdu.edu.cn/showproblem.php?pid=1848

题意:取石子问题,一共有3堆石子,每次只能取斐波那契数个石子,先取完石子者胜利,问先手胜还是后手胜

  1. 可选步数为一系列不连续的数,用GetSG(计算)
  2. 最终结果是所有SG值异或的结果
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=1001;
//f[] 可以取走的石子数
//sg[] 0~n的sg函数值
//hash[] mex{}
int f[maxn],sg[maxn],hash[maxn];
void getsg(int n)
{
memset(sg,0,sizeof(sg));
for(int i=1;i<=n;i++)
{
memset(hash,0,sizeof(hash));
for(int j=1;f[j]<=i;j++)
hash[sg[i-f[j]]]=1;
for(int j=0;j<=n;j++)
{
if(hash[j]==0)
{
sg[i]=j;
break;
}
}
}
}
int main()
{
int n,m,k;
f[0]=f[1]=1;
for(int i=2;i<=16;i++)
f[i]=f[i-1]+f[i-2];
getsg(1000);
while(cin>>n>>m>>k)
{
if(!n&&!m&&!k)
break;
int sum=0;
sum=sg[n]^sg[m]^sg[k];
if(sum==0)
cout<<"Nacci"<<endl;
else
cout<<"Fibo"<<endl;
}
return 0;
}

博弈论中的SG函数的更多相关文章

  1. 博弈论进阶之SG函数

    SG函数 个人理解:SG函数是人们在研究博弈论的道路上迈出的重要一步,它把许多杂乱无章的博弈游戏通过某种规则结合在了一起,使得一类普遍的博弈问题得到了解决. 从SG函数开始,我们不再是单纯的同过找规律 ...

  2. 博弈论基础之sg函数与nim

    在算法竞赛中,博弈论题目往往是以icg.通俗的说就是两人交替操作,每步都各自合法,合法性与选手无关,只与游戏有关.往往我们需要求解在某一个游戏或几个游戏中的某个状态下,先手或后手谁会胜利的问题.就比如 ...

  3. 博弈论初步(SG函数)

    讲解见此博客https://blog.csdn.net/strangedbly/article/details/51137432 理解Nim博弈,基于Nim博弈理解SG函数的含义和作用. 学习求解SG ...

  4. 【博弈论】【SG函数】【线段树】Petrozavodsk Summer Training Camp 2016 Day 9: AtCoder Japanese Problems Selection, Thursday, September 1, 2016 Problem H. Cups and Beans

    一开始有n个杯子,每个杯子里有一些豆子,两个人轮流操作,每次只能将一个豆子移动到其所在杯子之前的某个杯子里,不过可以移动到的范围只有一段区间.问你是否先手必胜. 一个杯子里的豆子全都等价的,因为sg函 ...

  5. 【博弈论】【SG函数】【找规律】Gym - 101147A - The game of Osho

    以后这种题还是不能空想,必须打个表看看,规律还是比较好找的……具体是啥看代码.用SG函数暴力的部分就不放了. #include<cstdio> using namespace std; i ...

  6. 【博弈论】【SG函数】bzoj1777 [Usaco2010 Hol]rocks 石头木头

    仅有距根节点为奇数距离的节点的石子被移走对答案有贡献,∵即使偶数的石子被移走,迟早会被再移到奇数,而奇数被移走后,不一定能够在移到偶数(到根了). 最多移L个:石子数模(L+1),比较显然,也可以自己 ...

  7. 【博弈论】【SG函数】poj2311 Cutting Game

    由于异或运算满足结合律,我们把当前状态的SG函数定义为 它所能切割成的所有纸片对的两两异或和之外的最小非负整数. #include<cstdio> #include<set> ...

  8. 【博弈论】【SG函数】hdu1848 Fibonacci again and again

    某个状态的SG函数被定义为 除该状态能一步转移到的状态的SG值以外的最小非负整数. 有如下性质:从SG值为x的状态出发,可以转移到SG值为0,1,...,x-1的状态. 不论SG值增加与否,我们都可以 ...

  9. POJ 3553 Light Switching Game 博弈论 nim积 sg函数

    http://poj.org/problem?id=3533 变成三维的nim积..前面hdu那个算二维nim积的题的函数都不用改,多nim积一次就过了...longlong似乎不必要但是还是加上了 ...

随机推荐

  1. docker镜像没有ifconfig、ping指令

    Docker的Ubuntu镜像安装的容器无ifconfig命令和ping命令 解决: apt-get update apt install net-tools       # ifconfig apt ...

  2. ES6__Symbol

    /** * Symbol */ /** * 1 什么是 Symbol ? * Symbol,表示独一无二的值.它是 JS 中的第七种数据类型. */ // 基本的数据类型: Null Undefine ...

  3. hdu 5188 zhx and contest [ 排序 + 背包 ]

    传送门 zhx and contest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  4. django学习之- 信号

    - Django内置的信号Model signals pre_init # django的modal执行其构造方法前,自动触发 post_init # django的modal执行其构造方法后,自动触 ...

  5. Python基础之 一 字符编码及转换

    python2 / python3编码转换 先上图一张: 说明:python编码转换的流程是 先进行decode解码,然后进行encode编码 解释: u'你好'  -->带u表示为unicod ...

  6. 寒武纪camp Day6

    补题进度:10/10 A(树形dp) 略 B(dp) 题意: 给出一个n个关键节点的机械手臂,最开始是竖直的,即关键点在二维平面上的坐标分别是(0,0) (0,100) (0,200) (0,300) ...

  7. 通过grub硬盘安装centos7

    centos7与centos6.x有了很大的不同,从硬盘安装的方法也有了很大的不同,故出此文章我机器环境如下:    有俩系统 Win7 和 RHEL6.4 ,是通过grub(非grub2)引导的,g ...

  8. cocos2d-x进化为2.5D的一些想法

     首先我得说Unity3D已经做的非常好了,搞这些东西意义真心不大.详细Unity3D有什么优势我之前也写过两篇文章来阐述自己的想法.         假设我的下一份工作是U3D的话,预计我就不会 ...

  9. UI 07 _ 导航视图控制器 与 属性传值

    首先, 先创建三个VC. 完毕点击按钮, 进入下一页, 并可以返回. 要先把导航视图控制器创建出来. 在AppDelegate.m 文件里代码例如以下: #import "AppDelega ...

  10. ScrollView阻尼效果

    activity_main.xml <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android&qu ...