博弈论中的SG函数
SG函数的定义:
g(x) = mex ( sg(y) |y是x的后继结点 )
其中mex(x)(x是一个自然是集合)函数是x关于自然数集合的补集中的最小值,比如x={0,1,2,4,6} 则mex(x)=3;
什么是后继结点?
所谓后继结点就是当前结点经过一个操作可以变成的状态。比如对于娶4石子游戏,假如每次可以取的数目是1,2,4,当前的石子数目也就是当前状态是5,那么5的后继结点就是{5-1, 5-2, 5-4}={4,3,1};
如果5的三个后继结点的SG函数值分别为0,1,3,那么5的SG值就是集合{0,1,3}的补集的最小元素,也就是2。
关于整个游戏的sg值之和sum,定义sum=sg1 ^ sg2 ^ sg3 ^ ……sgn. 其中^表示按位异或运算。
结论:一个游戏的初始局面是必败态当且仅当sum=0。
一篇非常好的关于SG值的论文:http://www.cnitblog.com/weiweibbs/articles/42735.html
SG值打表模板:
//f[]:可以取走的石子个数
//sg[]:0~n的SG函数值
//hash[]:mex{}
int f[N],sg[N],hash[N];
void getSG(int n)
{
int i,j;
memset(sg,0,sizeof(sg));
for(i=1;i<=n;i++)
{
memset(hash,0,sizeof(hash));
for(j=1;f[j]<=i;j++)
hash[sg[i-f[j]]]=1;
for(j=0;j<=n;j++) //求mes{}中未出现的最小的非负整数
{
if(hash[j]==0)
{
sg[i]=j;
break;
}
}
}
}
HDU1848
链接:http://acm.hdu.edu.cn/showproblem.php?pid=1848
题意:取石子问题,一共有3堆石子,每次只能取斐波那契数个石子,先取完石子者胜利,问先手胜还是后手胜
- 可选步数为一系列不连续的数,用GetSG(计算)
- 最终结果是所有SG值异或的结果
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=1001;
//f[] 可以取走的石子数
//sg[] 0~n的sg函数值
//hash[] mex{}
int f[maxn],sg[maxn],hash[maxn];
void getsg(int n)
{
memset(sg,0,sizeof(sg));
for(int i=1;i<=n;i++)
{
memset(hash,0,sizeof(hash));
for(int j=1;f[j]<=i;j++)
hash[sg[i-f[j]]]=1;
for(int j=0;j<=n;j++)
{
if(hash[j]==0)
{
sg[i]=j;
break;
}
}
}
}
int main()
{
int n,m,k;
f[0]=f[1]=1;
for(int i=2;i<=16;i++)
f[i]=f[i-1]+f[i-2];
getsg(1000);
while(cin>>n>>m>>k)
{
if(!n&&!m&&!k)
break;
int sum=0;
sum=sg[n]^sg[m]^sg[k];
if(sum==0)
cout<<"Nacci"<<endl;
else
cout<<"Fibo"<<endl;
}
return 0;
}
博弈论中的SG函数的更多相关文章
- 博弈论进阶之SG函数
SG函数 个人理解:SG函数是人们在研究博弈论的道路上迈出的重要一步,它把许多杂乱无章的博弈游戏通过某种规则结合在了一起,使得一类普遍的博弈问题得到了解决. 从SG函数开始,我们不再是单纯的同过找规律 ...
- 博弈论基础之sg函数与nim
在算法竞赛中,博弈论题目往往是以icg.通俗的说就是两人交替操作,每步都各自合法,合法性与选手无关,只与游戏有关.往往我们需要求解在某一个游戏或几个游戏中的某个状态下,先手或后手谁会胜利的问题.就比如 ...
- 博弈论初步(SG函数)
讲解见此博客https://blog.csdn.net/strangedbly/article/details/51137432 理解Nim博弈,基于Nim博弈理解SG函数的含义和作用. 学习求解SG ...
- 【博弈论】【SG函数】【线段树】Petrozavodsk Summer Training Camp 2016 Day 9: AtCoder Japanese Problems Selection, Thursday, September 1, 2016 Problem H. Cups and Beans
一开始有n个杯子,每个杯子里有一些豆子,两个人轮流操作,每次只能将一个豆子移动到其所在杯子之前的某个杯子里,不过可以移动到的范围只有一段区间.问你是否先手必胜. 一个杯子里的豆子全都等价的,因为sg函 ...
- 【博弈论】【SG函数】【找规律】Gym - 101147A - The game of Osho
以后这种题还是不能空想,必须打个表看看,规律还是比较好找的……具体是啥看代码.用SG函数暴力的部分就不放了. #include<cstdio> using namespace std; i ...
- 【博弈论】【SG函数】bzoj1777 [Usaco2010 Hol]rocks 石头木头
仅有距根节点为奇数距离的节点的石子被移走对答案有贡献,∵即使偶数的石子被移走,迟早会被再移到奇数,而奇数被移走后,不一定能够在移到偶数(到根了). 最多移L个:石子数模(L+1),比较显然,也可以自己 ...
- 【博弈论】【SG函数】poj2311 Cutting Game
由于异或运算满足结合律,我们把当前状态的SG函数定义为 它所能切割成的所有纸片对的两两异或和之外的最小非负整数. #include<cstdio> #include<set> ...
- 【博弈论】【SG函数】hdu1848 Fibonacci again and again
某个状态的SG函数被定义为 除该状态能一步转移到的状态的SG值以外的最小非负整数. 有如下性质:从SG值为x的状态出发,可以转移到SG值为0,1,...,x-1的状态. 不论SG值增加与否,我们都可以 ...
- POJ 3553 Light Switching Game 博弈论 nim积 sg函数
http://poj.org/problem?id=3533 变成三维的nim积..前面hdu那个算二维nim积的题的函数都不用改,多nim积一次就过了...longlong似乎不必要但是还是加上了 ...
随机推荐
- 校第十六届大学生程序设计竞赛暨2016省赛集训队选拔赛(Problem E)
Problem E Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- [Poi2011]Meteors 题解
题目大意: 给定一个环,每个节点有一个所属国家,k次事件,每次对[l,r]区间上的每个点点权加上一个值,求每个国家最早多少次操作之后所有点的点权和能达到一个值. 思路: 整体二分(二分答案),对于每个 ...
- zju 3209 dancing links 求取最小行数
题目可以将每一个格子都看做是一列,每一个矩形作为1行,将所有格子进行标号,在当前矩形中的格子对应行的标号为列,将这个点加入到十字链表中 最后用dlx求解精确覆盖即可,dance()过程中记得剪枝 #i ...
- hdu 1325数据弱
#include<stdio.h>//判断是否有环,判断是否有点,判断是否是一个父节点 #include<string.h> #define N 1000000 int pre ...
- Method, apparatus and system for acquiring a global promotion facility utilizing a data-less transaction
A data processing system includes a global promotion facility and a plurality of processors coupled ...
- django学习之- Form
参考:http://www.cnblogs.com/wupeiqi/articles/6144178.htmlFORM中的字段只对post上来的数据进行form验证,主要涉及:字段 和 插件字段:对用 ...
- 【Java源码】树-概述
树的基本术语 结点(node)由数据元素以及指向子树的地址构成. 若 X 结点有子树,则子树的根结点称为 X 的孩子(child)结点,相应地, X 称为其孩子的双亲(parents)结点,又称父母结 ...
- [Bzoj1051][HAOI2006]受欢迎的牛(缩环)
1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 6676 Solved: 3502[Submit][Sta ...
- MongoDB学习day09--Mongoose数据校验
一.Mongoose检验参数 required : 表示这个数据必须传入max: 用于 Number 类型数据, 最大值 min: 用于 Number 类型数据, 最小值 enum:枚举类型, 要求数 ...
- MongoDB学习day06--高级查询aggregate聚合管道和nodejs操作aggregate
一.MongoDB聚合管道(Aggregation Pilpeline) 使用聚合管道可以对集合中的文档进行变换和组合. 主要功能:表的关联查询.数据统计 二.aggregate 管道操作符与表达式 ...