Mondriaan's Dream POJ - 2411
可以用状压dp,但是要打一下表。暴力枚举行、这一行的状态、上一行的状态,判断如果上一行的状态能转移到这一行的状态就转移。
状态定义:ans[i][S]表示i行前已经全部填满,i行已经填上的列为集合S。如果有竖着的,全部当做用这一行的去补满上一行缺的。
(貌似还是插头dp的入门题)
#include<cstdio>
#include<cstring>
typedef long long LL;
LL f[][];
LL h,w;
/*LL ans[12][2050];
LL h,w;
bool judge(LL a,LL b)
{
LL i,num=0,t1,t2;
for(i=1;i<=w;i++)
{
t1=a&1;
t2=b&1;
a>>=1;
b>>=1;
if(t1==1&&t2==1)
num++;
else if(t1==0&&t2==0)
return false;
else
{
if(num&1)
return false;
num=0;
}
}
if(num&1)
return false;
else
return true;
}
LL get(LL h,LL w)
{
LL i,j,k;
memset(ans,0,sizeof(ans));
ans[0][(1<<w)-1]=1;
for(i=1;i<=h;i++)
for(j=0;j<(1<<w);j++)
for(k=0;k<(1<<w);k++)
if(judge(k,j))
{
ans[i][j]+=ans[i-1][k];
}
return ans[h][(1<<w)-1];
}
int main()
{
for(h=1;h<=11;h++)
for(w=1;w<=11;w++)
printf("f[%lld][%lld]=%lld;\n",h,w,get(h,w));
return 0;
}*/
int main()
{
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
f[][]=;
scanf("%lld%lld",&h,&w);
while(h!=&&w!=)
{
printf("%lld\n",f[h][w]);
scanf("%lld%lld",&h,&w);
}
}
Mondriaan's Dream POJ - 2411的更多相关文章
- Mondriaan's Dream(POJ 2411状态压缩dp)
题意:用1*2的方格填充m*n的方格不能重叠,问有多少种填充方法 分析:dp[i][j]表示i行状态为j时的方案数,对于j,0表示该列竖放(影响下一行的该列),1表示横放成功(影响下一列)或上一列竖放 ...
- Mondriaan's Dream - POJ 2411(状态压缩)
题目大意:有一些1*2的矩形,现在用这些小矩形覆盖M*N的大矩形,不能重复覆盖,并且要覆盖完全,求有多少种覆盖方式. 分析:可以使用1和0两种状态来表示这个位置有没有放置,1表示放置,0表示没有放置, ...
- poj 2411 Mondriaan's Dream 【dp】
题目:id=2411" target="_blank">poj 2411 Mondriaan's Dream 题意:给出一个n*m的矩阵,让你用1*2的矩阵铺满,然 ...
- POJ 2411 Mondriaan's Dream -- 状压DP
题目:Mondriaan's Dream 链接:http://poj.org/problem?id=2411 题意:用 1*2 的瓷砖去填 n*m 的地板,问有多少种填法. 思路: 很久很久以前便做过 ...
- POJ 2411 Mondriaan's Dream 插头dp
题目链接: http://poj.org/problem?id=2411 Mondriaan's Dream Time Limit: 3000MSMemory Limit: 65536K 问题描述 S ...
- Poj 2411 Mondriaan's Dream(压缩矩阵DP)
一.Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, ...
- POJ 题目2411 Mondriaan's Dream(状压DP)
Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 13519 Accepted: 787 ...
- POJ 2411 Mondriaan's Dream
状压DP Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 9938 Accepted: 575 ...
- HDU 1400 (POJ 2411 ZOJ 1100)Mondriaan's Dream(DP + 状态压缩)
Mondriaan's Dream Problem Description Squares and rectangles fascinated the famous Dutch painter Pie ...
随机推荐
- 九度OJ1004 Median
题目描写叙述: Given an increasing sequence S of N integers, the median is the number at the middle positio ...
- java File_encoding属性
今天给客户发版本号,突然发现报表导出内容为空,大小0字节.感到很奇怪,由于开发的时候都好好的,打包出来怎么会出现异常. 细看才后发现是 file_encoding这个java系统属性编码方式设置导致的 ...
- 无限级分类Asp.net Mvc实现
无限级分类Asp.net Mvc实现 无限级分类涉及到异步加载子类.加载当前类和匹配问题,现在做一个通用的实现. (一) 效果如下: (二)设计.实现及使用 (1)数据库 (a)表设计db ...
- LoadRunner中存储表格参数------关联数组
主要用到 web_reg_save_param_ex函数("Scope=All",), sprintf( CProdNo,"{CProdNo_%d}",i ); ...
- int&boolean——Java和C的一点小差别
Java和C的差别非常多.只是预计这一点非常多人都不知道. 今天面试时碰到这么道C语言题 求执行结果 int x = -1; while(!x!=0){ cout<<x<<en ...
- seajs载入流程图
近期读seajs源代码,整理出了主要逻辑的流程图(注意:是逻辑示意图).感兴趣的朋友能够看看,欢迎批评指正~ http://www.gliffy.com/go/publish/image/607216 ...
- MVC+ZTree大数据异步树加载
实例部分: 首先是为ZTree提供的数据规范,定义一个标准的接口,这样对于前台调用是清楚的,简单的,因为它返回的JSON数据将与ZTree默认的数据元素保持一致 /// <summary> ...
- 队列,管道,manager模块
###生产者消费者关系### 主要是解耦(高内聚,低耦合),借助队列来实现生产者消费者 模型 栈:先进后出(First In Last Out 简称:FILO) 队列:先进先出(First In Fi ...
- FMDB数据库队列
一.代码示例 1.需要先导入FMDB框架和头文件,由于该框架依赖于libsqlite库,所以还应该导入该库. 2.代码如下: 1 // 2 // YYViewController.m 3 // 05- ...
- 欧拉函数与数论的结合UVA11426
链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&am ...